Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) are exacerbated by climate change and its causes.

In addition, the inhalers prescribed for their treatment further contribute to climate change to varying degrees. Compared to dry powder inhalers (DPI), propellant-driven metered-dose inhalers (MDIs) have a significantly higher potential to damage the atmosphere. Furthermore, MDIs do not have a dose counter, making it difficult to accurately estimate the remaining amount, which can lead to increased consumption and carries the risk of insufficient treatment. The main differences between MDIs and DPIs are shown in the following table.

Table 1: Comparison of Metered-Dose Inhalers and Dry Powder Inhalers

Inhaler	Metered-dose inhaler (MDI)	Dry powder inhaler (DPI)
Inhaler technique	Hand/breath synchronisation is required (exception is with breath-triggered drug release systems)	No synchronisation required (in some cases, breathing flow-triggered)
Breathing technique*	Slow and deep breath**	Slow and deep breath, steady and strong inhalation**
Spacers	Possible	Not possible
Dose counter	Sometimes	Almost always
Environmental impact due to propellants	Very high	Low***

* The only relevant difference refers to the inspiration technique, i.e. slow with MDIs to avoid oropharyngeal impaction losses vs vigorous with powders for active aerosol generation, ensuring good aerosol quality.

** The type of exhalation (slow vs fast, through the mouth with lip closure or through the nose) has little effect on efficacy once a correctly performed, differentiated inhalation maneuver and a sufficiently long breath-hold have been achieved (these two are crucial!).

*** DPIs do not use or contain propellants, resulting in no environmental impact from propellants. Any potential environmental impacts from their use stem from other factors, such as manufacturing, transportation, and supply.

Therefore, the guideline recommends:

For adolescents >12 years or adults with obstructive pulmonary disease, a climate-conscious inhalative therapy (preferably using a DPI) should be implemented. This generally applies to both regular and PRN use.

The decision-making process for the selection of an inhaled drug can be seen in the following algorithm.

Figure 1: Prescription Algorithm

The availability of active ingredients for dry powder inhalers in Germany, irrespective of potential supply shortages, is shown in the following table:

Table 2: Active ingredients as dry powder inhaler

Short-acting inhaled beta-agonists Monotherapy and combination preparations	Dry powder in- haler available
Salbutamol	Yes
Ipratropium bromide + Fenoterol hydrobromide	No*
Long-acting inhaled beta-agonists Monotherapy and combination preparations	Dry powder in- haler available
Formoterol	Yes
Inhaled glucocorticoids Monotherapy and combination preparations	Dry powder in- haler available
Budesonide	Yes
Beclometasone + Formoterol	Yes
Budesonide + Formoterol	Yes
Fluticasone + Salmeterol	Yes
Fluticasone + Vilanterol	Yes
Fluticasone + Formoterol	No
Muscarinic receptor antagonists Monotherapy and combination preparations	Dry powder in- haler available
Tiotropium bromide	Yes
Formoterol + Aclidinium bromide	Yes
Formoterol + Beclometasone + Glycopyrronium bromide	Yes

Indacaterol + Glycopyrronium bromide	Yes
Olodaterol + Tiotropium bromide	No*
Vilanterol + Umeclidiniumbromid	Yes

*Propellant-free spray nebuliser available

The selection of the listed active ingredients is based on prescription frequencies from the 2022 Drug Prescription Report, representing \geq 80 % of all prescribed mono- and combination preparations.

The Carbon Footprint of Inhalation Therapy

To illustrate the effect of switching from an MDI to a DPI, Figure 2 shows the maximum possible savings. Depending on the therapy used and the required dosage, the reduction in the CO₂ footprint may be smaller

Figure 2: CO₂ fo otprint/possible savings in CO₂ consumption in kg CO₂

(for details and sources, see full version).

Switching from MDI to DPI (ICS Monotherapy)

Switching from MDI to DPI (Combination Therapy)

Switching from a mixed diet to a vegetarian diet for one year

Avoiding a flight of 1000 km

Avoiding a car trip (petrol) of 1000 km

Guidelines Hilfen für eine gute Medizin

Versions-Nummer: version number:	2.0
Erstveröffentlichung: Initial release:	2022-03
Überarbeitung von: Revision of:	2024-01
Nächste Überprüfung geplant: Review planned:	2028-11

The AMWF records and publishes the guidelines of the professional associations with the greatest possible care - yet the AWMF can not assueme any responsibility for the accuracy of the content. **Espacially dosage information of the manufacturer must always be considered!**

Die AWMF erfasst und publiziert die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt - dennoch kann die AWMF für die Richtigkeit des Inhalts keine Verantwortung übernehmen. **Insbesondere bei Dosierungsangaben sind stets die Angaben der Hersteller zu beachten!**

autorisiert für die elektronsiche Publikation / authorized for electronic publication: AWMF