Update der S3-Leitlinie:

Epidemiologie, Diagnostik und Therapie erwachsener Patienten mit nosokomialer Pneumonie

Epidemiology, diagnosis and treatment of adult patients with nosocomial pneumonia

Langversion 3.0- Januar 2024, AWMF-Registernummer: 020-013
Fördernummer beim Gemeinsamen Bundesausschuss (G-BA): 01VSF22007

Autoren: Jessica Rademacher, Santiago Ewig, Béatrice Grabein, Irit Nachtigall, Mathias Pletz, Marianne Abele-Horn, Maria Deja, Martina Gaßner, Sören Gatermann, Christine Geffers, Herwig Gerlach, Stefan Hagel, Claus Peter Heußel, Stefan Kluge, Martin Kolditz, Evelyn Kramme, Hilmar Kühl, Markus Panning, Peter-Michael Rath, Gernot Rohde, Bernhard Schaal, Helmut Salzer, Dierk Schreiter, Hans Schweisfurth, Susanne Unverzagt, Markus A. Weigand, Tobias Welte

Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP)
(federführende Fachgesellschaft)

und

Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)
Deutsche Gesellschaft für Chirurgie e.V. (DGCH)
Deutsche Gesellschaft für Hygiene und Mikrobiologie e.V. (DGHM)
Deutsche Gesellschaft für Infektiologie e.V. (DGI)
Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin e.V. (DGIIN)
Deutsche Gesellschaft für Innere Medizin e.V. (DGIM)
Deutsche Röntgengesellschaft, Gesellschaft für Medizinische Radiologie e.V. (DRG)
Deutsche Sepsis-Gesellschaft e.V. (DSG)
Gesellschaft für Virologie e.V. (GfV)
Paul-Ehrlich-Gesellschaft für Infektionstherapie e.V. (PEG)
Deutsche Sepsis Hilfe e.V. (DSH)

Schlüsselwörter: Nosokomiale Pneumonie, beatmungsassoziierte Pneumonie, deutsche Leitlinie, Antibiotic stewardship, Sepsischer Schock

Key words: Nosocomial pneumonia, Ventilator-associated pneumonia, german guideline, Antimicrobial stewardship, septic shock
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Informationen zu dieser Leitlinie</td>
<td>4</td>
</tr>
<tr>
<td>1.1</td>
<td>Herausgebende und federführende Fachgesellschaft</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Finanzierung</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Leitlinienkoordination und wissenschaftliche Leitung</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Zusammensetzung der Leitliniengruppe</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Leitliniensekretariat</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Methodische Koordination und Redaktion</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Beteiligte Fachgesellschaften und Organisation</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Methodische Begleitung</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Gliederung der Autoren in Arbeitsgruppen</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Verwendete Abkürzungen</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Patienten- / Bürgerbeteiligung</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Einführung</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Übersicht der Empfehlungen und Statements</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Geltungsbereich und Zweck</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Zielsetzung und Fragestellung</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Versorgungsbereich</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Patientenzielgruppe</td>
<td>15</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Adressaten</td>
<td>15</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Gültigkeitsdauer und Aktualisierungsverfahren</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Methodische Grundlagen</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Kritische Bewertung der Evidenz</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Strukturierte Konsensusfindung</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Empfehlungsgraduierung und Feststellung der Konsensusstärke</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Statements</td>
<td>18</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Expertenkonsens</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Umgang mit Interessenkonflikten</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Externe Begutachtung und Verabschiedung</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Redaktionelle Hinweise</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Einführung und Epidemiologie</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Definition</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Definition der nosokomialen Pneumonie</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Definition der Ventilator-assozierten Pneumonie</td>
<td>20</td>
</tr>
<tr>
<td>4.3</td>
<td>Early onset and late onset nosokomiale Pneumonie</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Erregerspektrum und Resistenz</td>
<td>21</td>
</tr>
<tr>
<td>5.1</td>
<td>Erregerspektrum</td>
<td>21</td>
</tr>
<tr>
<td>5.2</td>
<td>Risikofaktoren für eine nosokomiale Pneumonie mit multiresistenten Erregern</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Diagnostik</td>
<td>28</td>
</tr>
<tr>
<td>6.1</td>
<td>Klinische Diagnose der nosokomialen Pneumonie</td>
<td>28</td>
</tr>
</tbody>
</table>
6.2 Biomarker .. 29
6.3 Mikrobiologische Diagnostik .. 31
 6.3.1 Bakteriologische Diagnostik .. 31
 6.3.2 Mykologische Diagnostik ... 34
 6.3.3 Virologische Diagnostik ... 38
 6.3.4 Materialgewinnung .. 38
6.4 Bildgebung .. 42
7 Therapie .. 44
 7.1 Antimikrobielle Therapie .. 44
 7.1.1 Antibakterielle Substanzen .. 44
 7.1.1.1 Prolongierte Infusionsdauer und Therapeutisches Drug Monitoring von Betalaktam
 Antibiotika 53
 7.1.2 Antifungale Substanzen .. 56
 7.1.3 Antivirale Substanzen ... 57
 7.2 Mono- versus Kombinationstherapie ... 58
 7.3 Inhalative antimikrobielle Therapie ... 59
 7.4 Reevaluation der Therapie .. 61
 7.5 Deeskalation und Fokussierung der Therapie .. 64
 7.6 Therapiedauer ... 65
 7.7 Gezielte Therapie bei speziellen Erregern ... 67
 7.8 Therapieversagen ... 71
8 Antibiotic Stewardship ... 74
9 Tabellen- und Abbildungsverzeichnis ... 77
10 Literaturverzeichnis ... 78
1 Informationen zu dieser Leitlinie

Das vorliegende Update der Leitlinie zur Behandlung von Patienten mit nosokomialer Pneumonie löst die bisher für den deutschen Sprachraum gültige Version der Leitlinie zur nosokomialen Pneumonie von 2017 ab (1).

Was ist neu?

- Neue Definition der therapierelevanten Risikofaktoren für multiresistente Erreger (MRE)
- Stellungnahme zum Einsatz einer Multiplex-PCR im Rahmen der mikrobiologischen Diagnostik > kein regelhafter Einsatz empfohlen
- Neue Empfehlung zur Diagnostik auf Aspergillus bei Patienten mit Risikofaktoren mittels Antigentest auf Galaktomannan aus bronchoalveolärer Lavage
- Virologische molekulardiagnostische Untersuchung mindestens auf SARS-CoV2 und Influenzavirus in Abhängigkeit von der epidemiologischen Situation
- Keine kalkulierte Monotherapie mit Ceftazidim bei HAP/VAP
- Monotherapie mit Meropenem bei Patienten mit septischem Schock ohne weiteren Risikofaktor für MRE möglich
- Kombinationstherapie bei Patienten mit erhöhtem Risiko für MRE und septischem Schock
- Tobramycin als einziges Aminoglykosid als Kombinationspartner empfohlen
- Empfehlung zur Therapiedauer der HAP/VAP auf 7-8 Tage verkürzt
- Empfehlung zur prolongierten Infusion der Betalaktam-Antibiotika bei kritisch kranken Patienten
- Zusätzliche inhalative Antibiotikatherapie bei Vorliegen multiresistenter gramnegativer Erreger
- Neue Empfehlungen zum Vorgehen bei Reevaluation der Therapie
• Fokus auf Antibiotic Stewardship: Empfehlung zur Deeskalation und Fokussierung der Therapie, sowie für Strategien zur Optimierung des Verordnungsverhaltens
• Empfehlungen zur gezielten Therapie spezieller Erreger inklusive Umgang mit neuen Reserveantibiotika

Zusätzlich zu dieser Langfassung liegen die folgenden Dokumente vor:
• Kurzversion der Leitlinie in deutscher und englischer Sprache mit einer übersichtlichere Darstellung aller abgestimmten Empfehlungen und Statements sowie der wesentlichen Tabellen.
• Leitlinienreport mit einer detaillierter Darstellung des methodischen Vorgehens bei der Erstellung der Leitlinie sowie der Methodik, mit der Bewertung möglicher Interessenkonflikte und der zusammenfassenden Tabelle der Interessenerklärungen und mit den Ergebnissen der systematischen Evidenzrecherche einschließlich der erstellten Evidenztabellen
• Empfehlung zur richtigen Inhalation von Antibiotika auf der Intensivstation
• Präsentationsfolien

Diese Leitlinie und alle Zusatzdokumente sind über folgende Seiten zugänglich:
https://register.awmf.org/de/leitlinien/detail/020-013
https://pubmed.ncbi.nlm.nih.gov (Kurzversion auf englischer Sprache)

1.1 Herausgebende und federführende Fachgesellschaft

Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP) als federführende Fachgesellschaft. Es erfolgte eine formale Sichtung durch das IMWi der AWMF entsprechend des AWMF-Regelwerkes. Die Vorgabe der Inhalte erfolgte durch die Autoren und die beteiligten Fachgesellschaften.

1.2 Finanzierung

1.3 Leitlinienkoordination und wissenschaftliche Leitung

Leitung:
PD Dr. med. Jessica Rademacher, Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover, rademacher.jessica@mh-hannover.de

Stellvertretung:
Prof. Dr. med. Tobias Welte, Direktor der Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover, welte.tobias@mh-hannover.de

1.4 Zusammensetzung der Leitliniengruppe
1.4.1 Leitliniensekretariat
1.4.2 Methodische Koordination und Redaktion

Apl. Prof. Dr. rer. nat. Susanne Unverzagt, Institut für Allgemeinmedizin, Martin-Luther-Universität Halle-Wittenberg, AWMF-Beraterin

1.4.3 Beteiligte Fachgesellschaften und Organisationen

Tabelle 1. Beteiligte Fachgesellschaften, Organisationen und Mandatsträger

<table>
<thead>
<tr>
<th>Beteiligte Fachgesellschaften und Organisationen</th>
<th>Mandatsträger und beteiligte Experten</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP) (Federführende Fachgesellschaft)</td>
<td>PD Dr. med. Jessica Rademacher (Koordination und wissenschaftliche Leitung) Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Paul-Ehrlich-Gesellschaft für Infektionstherapie e.V. (PEG)</td>
<td>Prof. Dr. med. Tobias Welte (Stellvertretende Leitung) Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP) (Federführende Fachgesellschaft)</td>
<td>Prof. Dr. med. Martin Kolditz Fachabteilung für Pneumologie, Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus an der technischen Universität Dresden, Dresden</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. med. Gernot Rohde Medizinische Klinik I Schwerpunkt Pneumologie und Allergologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main</td>
<td>01.02.2022 bis 31.12.2023</td>
</tr>
<tr>
<td></td>
<td>PD Dr. med. Bernhard Schaaf Medizinische Klinik für Pneumologie, Infektiologie und internistische Intensivmedizin, Klinikum Dortmund, Dortmund</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. med. Santiago Ewig Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Evangelisches Krankenhaus Herne-Eickel und Augusta-Krankenanstalt Bochum, Herne-Eickel und Bochum</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Anästhesiologie & Intensivmedizin e.V. (DGAI)</td>
<td>Dr. med. Martina Gaßner (Stellvertreterin für Frau Prof. Dr. med Spies)</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
</tbody>
</table>
Beteiligte Fachgesellschaften und Organisationen

<table>
<thead>
<tr>
<th>Mandatsträger und beteiligte Experten</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin Charité Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. med. Maria Deja Klinik für Anästhesiologie und Intensivmedizin, Sektion Interdisziplinäre Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein Campus Universitätsklinikum Lübeck, Lübeck</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Prof. Dr. med. Herwig Gerlach Klinik für Anästhesie, operative Intensivmedizin und Schmerztherapie, Vivantes Klinikum Neukölln, Berlin</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Prof. Dr. med. Irit Nachtigall Ressort für Infektiologie und Antibiotic Stewardship Helios Region Ost, Helios Klinikum Berlin-Buch und Fachbereich Krankenhaushygiene, Helios Klinikum Bad Saarow, Berlin und Bad Saarow</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Chirurgie e.V. (DGCH)</td>
<td></td>
</tr>
<tr>
<td>Dr. med. Dierk Schreiter Klinik für Intensivmedizin, Helios Park-Klinikum Leipzig, Akademisches Lehrkrankenhaus der Universität Leipzig, Leipzig</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Hygiene und Mikrobiologie e.V. (DGHM)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. med. Dr. rer. nat. Marianne Abele-Horn Institut für Hygiene und Mikrobiologie der Universität Würzburg, Würzburg</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Prof. Dr. med. Peter-Michael Rath Institut für Medizinische Mikrobiologie, Universitätsklinikum Essen, Essen</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Infektiologie e.V. (DGI)</td>
<td></td>
</tr>
<tr>
<td>Dr. med. Evelyn Kramme Klinik für Infektiologie und Mikrobiologie, Campus Universitätsklinikum Lübeck, Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Prof. Dr. med. Mathias Pletz Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsmedizin Jena, Jena</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin e.V. (DGIIN)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. med. Stefan Kluge</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Beteiligte Fachgesellschaften und Organisationen</td>
<td>Mandatsträger und beteiligte Experten</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Zentrum für Anästhesiologie und Intensivmedizin, Klinik für Intensivmedizin Universitätsklinikum Hamburg-Eppendorf | Prof. Dr. med. Hans Schweisfurth
Pulmologisches Forschungsinstitut - Institute for Pulmonary Research (IPR), Cottbus
PD Dr. med. Stefan Hagel
Institut für Infekionsmedizin und Krankenhaushygiene, Universitätsmedizin Jena, Jena | 01.08.2022 bis 31.12.2023 |
| Deutsche Röntgengesellschaft e.V., Gesellschaft für medizinische Radiologie e.V. (DRG) | Prof. Dr. med. Claus Peter Heußel
Abteilung für Diagnostische und Interventionelle Radiologie, Thoraxklinik Universitätsklinikum Heidelberg, Heidelberg
PD Dr. med. Hilmar Kühl
Klinik für Radiologie, St. Bernhard-Hospital Kamp-Lintfort GmbH, Kamp-Lintfort | 01.08.2022 bis 31.12.2023 |
| Deutsche Sepsis-Gesellschaft e.V. (DSG) | Prof. Dr. med. Markus A. Weigand
Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Heidelberg
Prof. Dr. med. Christine Geffers
Institut für Hygiene und Umweltmedizin, Charité Universitätsmedizin Berlin, Berlin | 01.08.2022 bis 31.12.2023 |
| Gesellschaft für Virologie e.V. (GfV) | Prof. Dr. med. Marcus Panning
Institut für Virologie, Department für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Freiburg, Freiburg | 01.08.2022 bis 31.12.2023 |
| Paul-Ehrlich-Gesellschaft für Infektionstherapie e.V. (PEG) | Prof. Dr. med. Sören Gatermann
Abteilung für Medizinische Mikrobiologie, Institut für Hygiene und Mikrobiologie und Nationales Referenzzentrum für gramnegative Krankenhauserreger, Ruhr-Universität Bochum, Bochum
Dr. med. Béatrice Grabein
Klinische Mikrobiologie und Krankenhaushygiene, LMU Klinikum, München | 01.08.2022 bis 31.12.2023 |
| Deutsche Sepsis-Hilfe e.V. (DSH) | Prof. Dr. med. Frank Brunkhorst
Zentrum für klinische Studien (ZKS) | 01.08.2022 bis 31.12.2023 |
Beteiligte Fachgesellschaften und Organisationen

<table>
<thead>
<tr>
<th>Funktion & Fachgesellschaft/Organisation</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universitätsklinikum Jena, Jena</td>
<td></td>
</tr>
<tr>
<td>Netzwerk chronisch pulmonale Aspergillose (CPAnet)</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
</tbody>
</table>

Mandatsträger und beteiligte Experten

<table>
<thead>
<tr>
<th>Funktion & Fachgesellschaft/Organisation</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. med. Helmut J. F. Salzer</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Klinische Abteilung für Infektiologie und Tropenmedizin, Universitätsklinik für Innere Medizin 4 – Pneumologie, Kepler Universitätsklinikum, Linz</td>
<td></td>
</tr>
</tbody>
</table>

Zeitraum

01.08.2022 bis 31.12.2023

1.5 Methodische Begleitung

Herr PD Dr. rer. nat. Helmut Sitter übernahm die Moderation in den virtuell und in Präsenz durchgeführten Leitlinienkonferenzen, so zu den einzelnen Kapiteln, Empfehlungen und Texten und den Abstimmungen. Darüber hinaus unterstützte er Frau PD Dr. Rademacher beratend bei der Bewertung der Interessen auf einen thematischen Bezug zur Leitlinie.

Tabelle 2. Methodische Unterstützung

<table>
<thead>
<tr>
<th>Weitere Teilnehmende</th>
<th>Funktion & Fachgesellschaft/Organisation</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apl. Prof. Dr. rer. nat. Susanne Unverzagt</td>
<td>AWMF-Beraterin, Martin-Luther-Universität Halle/Wittenberg, Institut für Allgemeinmedizin, Literatursuche- und bewertung</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>PD Dr. rer. nat. Helmut Sitter</td>
<td>AWMF e.V. / Philipps-Universität Marburg, Moderation der Leitlinienkonferenzen und beratende Unterstützung bei der Bewertung der Interessen</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
</tbody>
</table>

Tabelle 3. Weitere Teilnehmende

<table>
<thead>
<tr>
<th>Weitere Teilnehmende</th>
<th>Funktion & Fachgesellschaft/Organisation</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. med. Ewa Missol-Kolka</td>
<td>Administrative Unterstützung Projektmanagement BREATH - Biomedical Research in Endstage and Obstructive Lung Disease Hannover</td>
<td>01.08.2022 bis 31.12.2023</td>
</tr>
<tr>
<td>Weitere Teilnehmende</td>
<td>Funktion & Fachgesellschaft/Organisation</td>
<td>Zeitraum</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Standort des Deutschen Zentrums für Lungenforschung, Medizinische Hochschule Hannover (MHH)</td>
<td></td>
</tr>
</tbody>
</table>

1.6 Gliederung der Autoren in Arbeitsgruppen

Tabelle 4. Arbeitsgruppen

<table>
<thead>
<tr>
<th>Arbeitsgruppe</th>
<th>Mitglieder (AG-Leitung unterstrichen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung, Epidemiologie und Definitionen</td>
<td>Prof. Dr. Christine Geffers
PD Dr. Jessica Rademacher</td>
</tr>
<tr>
<td>Erregerspektrum und Resistenz</td>
<td>Dr. Béatrice Grabein
Prof. Dr. Sören Gatermann
Prof. Dr. Marianne Abele-Horn
Prof. Dr. Stefan Kluge
Prof. Dr. Helmut J. F. Salzer</td>
</tr>
<tr>
<td>Diagnostik</td>
<td>Prof. Dr. Santiago Ewig
Prof. Dr. Martin Kolditz
Prof. Dr. Peter-Michael Rath
Prof. Dr. Helmut J. F. Salzer
Prof. Dr. Marcus Panning
PD Dr. Hilmar Kühl
Prof. Dr. Claus Peter Heußel</td>
</tr>
<tr>
<td>Therapie</td>
<td>Prof. Dr. Irit Nachtigall
Prof. Dr. Mathias Pletz
PD Dr. Stefan Hagel
Dr. Evelyn Kramme
Prof. Dr. Helmut J. F. Salzer
Prof. Dr. Gernot Rohde
Prof. Dr. Maria Deja
PD Dr. Bernhard Schaaf
Prof. Dr. Stefan Kluge
Prof. Dr. Markus A. Weigand
Prof. Dr. Tobias Welte
Dr. Martina Gaßner
Prof. Dr. Herwig Gerlach</td>
</tr>
<tr>
<td>Antibiotic Stewardship</td>
<td>Prof. Dr. Irit Nachtigall</td>
</tr>
<tr>
<td>Arbeitsgruppe</td>
<td>Mitglieder (AG-Leitung unterstrichen)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Erstellung und Korrektur des Gesamtmanuskriptes</td>
<td>Dr. Evelyn Kramme</td>
</tr>
<tr>
<td>PD Dr. Jessica Rademacher</td>
<td>Prof. Dr. Hans Schweisfurth</td>
</tr>
<tr>
<td>Dr. Dierk Schreiter</td>
<td></td>
</tr>
</tbody>
</table>

1.7 Verwendete Abkürzungen

Tabelle 5. Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Antibiotic Stewardship</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>Angio-CT</td>
<td>Angiographie-Computertomographie</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>ATS</td>
<td>American Thoracic Society</td>
</tr>
<tr>
<td>BAL</td>
<td>Bronchoalveoläre Lavage</td>
</tr>
<tr>
<td>BALF</td>
<td>BAL-Flüssigkeit</td>
</tr>
<tr>
<td>BfArM</td>
<td>Bundesinstitut für Arzneimittel und Medizinprodukte</td>
</tr>
<tr>
<td>CADDY</td>
<td>Calculator to Approximate Drug-Dosing in Dialysis</td>
</tr>
<tr>
<td>CAP</td>
<td>Community-acquired pneumonia</td>
</tr>
<tr>
<td>CAPA</td>
<td>Covid-19-assoziierte pulmonale Aspergillose</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical & Laboratory Standards Institute</td>
</tr>
<tr>
<td>Cmax</td>
<td>Spitzenkonzentration</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalievirus</td>
</tr>
<tr>
<td>COP</td>
<td>Kryptogen organisierende Pneumonie</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CPIS</td>
<td>Clinical Pulmonary Infection Score</td>
</tr>
<tr>
<td>CRE</td>
<td>Carbapenem-resistente Enterobacteriaceae</td>
</tr>
<tr>
<td>CR-GN</td>
<td>Carbapenem-resistente gramnegative Erreger</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>DAD</td>
<td>Diffuser Alveolarschaden</td>
</tr>
<tr>
<td>DALYs</td>
<td>Disability-adjusted life years</td>
</tr>
<tr>
<td>DTR</td>
<td>Difficult-to-treat resistance</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organization for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended-Spectrum β-lactamase</td>
</tr>
<tr>
<td>ESCMID</td>
<td>European Society for Clinical Microbiology and Infectious Diseases</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>EUCAST</td>
<td>European Committee on Antimicrobial Susceptibility Testing</td>
</tr>
<tr>
<td>G-BA</td>
<td>Gemeinsamer Bundesausschuss</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>GM</td>
<td>Galactomannan</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations, Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>HAP</td>
<td>Hospital-acquired pneumonia</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HSCT</td>
<td>Haematopoietic stem cell transplantation</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes-simpex-Virus</td>
</tr>
<tr>
<td>HZV</td>
<td>Herzzzeitvolumen</td>
</tr>
<tr>
<td>ICO</td>
<td>Intracellulare Organismen</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of America</td>
</tr>
<tr>
<td>IFSG</td>
<td>Infektionsschutzgesetz</td>
</tr>
<tr>
<td>IPA</td>
<td>Invasive pulmonale Aspergillose</td>
</tr>
<tr>
<td>ITS</td>
<td>Intensivstation</td>
</tr>
<tr>
<td>KBE</td>
<td>Koloniebildende Einheiten</td>
</tr>
<tr>
<td>KISS</td>
<td>Krankenhaus-Infekions-Surveillance-System des Nationalen Referenzzentrums für die Surveillance nosokomialer Infektionen</td>
</tr>
<tr>
<td>KPC</td>
<td>Klebsiella-pneumoniae-Carbapenemase</td>
</tr>
<tr>
<td>KRINKO</td>
<td>Kommission für Krankenhaushygiene und Infektionsprävention</td>
</tr>
<tr>
<td>kV</td>
<td>Röhrenspannung</td>
</tr>
<tr>
<td>LFA</td>
<td>Aspergillus Galactomannan lateral flow assay</td>
</tr>
<tr>
<td>LFD</td>
<td>Lateral flow device</td>
</tr>
<tr>
<td>MBL</td>
<td>Metallo-Beta-Laktasen</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistance</td>
</tr>
<tr>
<td>MHK</td>
<td>Minimale Hemmungskonzentration</td>
</tr>
<tr>
<td>MiQ</td>
<td>Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik</td>
</tr>
<tr>
<td>MODS</td>
<td>Multi organ dysfunction syndrome</td>
</tr>
<tr>
<td>MRE</td>
<td>Multiresistente Erreger</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistenter Staphylococcus aureus</td>
</tr>
<tr>
<td>MSGERC</td>
<td>Mycoses Study Group – Education and Research Consortium</td>
</tr>
<tr>
<td>MSSA</td>
<td>Methicillin-sensibler Staphylococcus aureus</td>
</tr>
<tr>
<td>NAK</td>
<td>Nationales Antibiotika-Sensitivitätstst-Komitee</td>
</tr>
<tr>
<td>NDM</td>
<td>Neu-Delhi Metallo-Beta-Laktasen</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Healthcare Safety Network</td>
</tr>
<tr>
<td>NIV</td>
<td>Nicht invasive Beatmung</td>
</tr>
</tbody>
</table>
1.8 Patienten- / Bürgerbeteiligung

Die Deutsche Sepsis-Hilfe e.V. wurde angefragt, an der Leitlinienfindung teilzunehmen und zu den Konsensuskonferenzen eingeladen. Herr Prof. Dr. med. Frank Brunkhorst wurde von der Deutsche-Sepsis-Hilfe e.V. als Mandatsträger benannt. Er begleitete die Erstellung der Leitlinie aus Patientensicht.
2 Einführung

2.1 Übersicht der Empfehlungen und Statements

<table>
<thead>
<tr>
<th>Empfehlung</th>
<th>Thema</th>
<th>Evidenzqualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Risikofaktoren für eine HAP mit multiresistenten Erregern</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>1.</td>
<td>Klinische Diagnose</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>2.</td>
<td>Rolle von Scores bei der Risikobeurteilung</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>4.</td>
<td>Rolle von Biomarkern bei der Diagnose und der Sepsis im Rahmen der HAP</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>5.</td>
<td>Durchführung konventioneller mikrobiologischer Untersuchungen</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>6.</td>
<td>Rolle der Multiplex-PCR im Rahmen der mikrobiologischen Diagnostik</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>7.</td>
<td>Aspergillus-Diagnostik</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>8.</td>
<td>Virologische Diagnostik</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>9.</td>
<td>Invasive versus nicht invasive Materialgewinnung</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>10.</td>
<td>Standards bei der Materialgewinnung</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>11.</td>
<td>Bildgebende Verfahren zur Diagnostik der HAP</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>12.</td>
<td>Beginn einer empirischen Therapie</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>13.</td>
<td>Kalkulierte empirische Therapie</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>14.</td>
<td>Prolongierte Infusion einer Betalaktaamtherapie</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>15.</td>
<td>Mono- versus Kombinationstherapie</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>16.</td>
<td>Inhalative Antibiotikatherapie</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>17.</td>
<td>Inhalative Antibiotikatherapie bei Vorliegen multiresistenter Erreger</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>18.</td>
<td>Evaluation des Therapieansprechens</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>19.</td>
<td>Doseskalation der Antinfektiven Therapie</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>20.</td>
<td>Fokussierung der Antinfektiven Therapie</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>21.</td>
<td>Therapiedauer</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>22.</td>
<td>PCT gestützter Algorhythmus zur Steuerung der Behandlungsdauer</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>23.</td>
<td>Gezielte Therapie bei speziellen Erregern</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>24.</td>
<td>Vorgehen beim Therapieversagen</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>25.</td>
<td>Vorgehen beim Therapieversagen und positivem HSV-Nachweis</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
<tr>
<td>26.</td>
<td>Einsatz von Antibiotic Stewardship Maßnahmen</td>
<td>☒ ☒ ☒ ☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statement</th>
<th>Thema</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diagnostik von Mikroorganismen des oropharyngealen Standortmiokbioms</td>
<td>Best Practice</td>
</tr>
<tr>
<td>2.</td>
<td>Betalaktam-Unverträglichkeit/ -Allergie</td>
<td>Best Practice</td>
</tr>
</tbody>
</table>
2.2 Geltungsbereich und Zweck

2.2.1 Zielsetzung und Fragestellung

In ihrer konstituierenden Sitzung legten die Mitglieder der Leitliniengruppe folgende Ziele der Leitlinie fest:

− Flächendeckende Verbesserung der Versorgungsqualität bei Patienten mit Nosokomialer Pneumonie
− Sicherstellung eines hohen Niveaus adäquater Therapie
− Etablierung von Entscheidungshilfen zu Diagnostik und Therapie
− Optimierung des rationalen Einsatzes von Antibiotika mit adäquater Antibiotika-Auswahl, Dosierung und Therapiedauer im Sinne von Antibiotic Stewardship (ABS)
− Vermeidung der Selektion resisterter Erreger
− Reduktion der Krankenhausliegedauer durch kürzere Therapiedauern mit Kostenersparnis
− Reduktion der Sterblichkeit
− Bewertung und Empfehlung der Einsatzes der neuen (teuren) Antiinfektiva bei Problemkeimen
− Stärkere Fokussierung auf Viren als Auslöser der Pneumonie und Pilze als Superinfektion

Die Leitliniengruppe legte bei ihrer konstitutionellen Sitzung im September 2022 fest, dass u.a. zu folgenden Fragen Stellung genommen werden soll:

− Einsatz von Multiplex-PCR Techniken zur Verbesserung der Diagnostik der nosokomialen Pneumonie
− Welche Patienten haben ein besonderes Risiko für eine Infektion mit Aspergillus?
− Welchen Stellenwert hat die kalkulierte Kombinationstherapie bei nosokomialer Pneumonie?
− Wann ist eine inhalative antibiotische Therapie indiziert?
− Wie lange ist die optimale Therapiedauer und mit welchen Markern kann diese gesteuert werden?

2.2.2 Versorgungsbereich

Stationärer Bereich: Normalstation, Überwachungsstation, Intensivstation

2.2.3 Patientenzielgruppe

Erwachsene Patienten mit im Krankenhaus erworbener Pneumonie

2.2.4 Adressaten

Die Leitlinie richtet sich an folgende im Krankenhaus tätigen Ärzte, die mit der Diagnostik und Therapie nosokomialer Pneumonien konfrontiert sind. Hierzu gehören insbesondere Ärzte der Fachgebiete Anästhesiologie, Chirurgie, Innere Medizin, Pneumologie, Intensivmedizin, Klinische Infektiologie, Klinische Mikrobiologie und Hygiene, Radiologie und Virologie. Sie dient zur Information aber auch für Ärzte anderer Fachgebiete, die Patienten mit nosokomialen Infektionen betreuen.

Sie fungiert als Orientierung für Personen, Organisationen, Kostenträger sowie medizinisch-wissenschaftliche Fachgesellschaften und Berufsverbände, die direkt oder indirekt mit diesem Thema in Verbindung stehen.

Zudem kann sie zur Beurteilungsgrundlage für Rechtsstreitfälle und Qualitätsmanagement benutzt werden.

2.2.5 Gültigkeitsdauer und Aktualisierungsverfahren

Die Leitlinie ist bis zur nächsten Aktualisierung gültig (Gültigkeit 01/03/2024-28/02/2029). Kommentare und Hinweise für den Aktualisierungsprozess sind ausdrücklich erwünscht und können an das Leitliniensekretariat (Leitlinien@pneumologie.de) oder die Erstautorin (rademacher.jessica@mh-hannover.de) gesendet werden.
2.3 Methodische Grundlagen

2.3.1 Kritische Bewertung der Evidenz

Die methodische Qualität der eingeschlossenen Studien (systematischen Übersichten, evidenzbasierten Leitlinien und randomisierten kontrollierten Studien bzw. konfunderadjustierte Kohortenstudien) wurde mit validierten Instrumenten in Abhängigkeit von den jeweiligen Studiendesigns bewertet (2,3).

Tabelle 6. Vierstufige Evidenzbewertung nach GRADE

<table>
<thead>
<tr>
<th>Qualitätssstufe</th>
<th>Aktuelle Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoch ☸☼☼☼</td>
<td>Wir sind sehr sicher, dass der wahre Effekt nahe dem Effektschätzer liegt.</td>
</tr>
<tr>
<td>Moderat ☸☼☼</td>
<td>Wir haben mäßig viel Vertrauen in den Effektschätzer: Der wahre Effekt ist wahrscheinlich nahe am Effektschätzer, aber es besteht die Möglichkeit, dass er relevant verschieden ist.</td>
</tr>
<tr>
<td>Niedrig ☸☼</td>
<td>Unser Vertrauen in den Effektschätzer ist begrenzt: Der wahre Effekt kann durchaus relevant verschieden vom Effektschätzer sein.</td>
</tr>
<tr>
<td>Sehr niedrig ☸☼☼☼</td>
<td>Wir haben nur sehr wenig Vertrauen in den Effektschätzer: Der wahre Effekt ist wahrscheinlich relevant verschieden vom Effektschätzer.</td>
</tr>
</tbody>
</table>

2.3.2 Strukturierte Konsensusfindung

Die strukturierte Konsensusfindung erfolgte im Zeitraum vom 14.11.2022 bis 05.10.2023 im Rahmen von persönlichen (14./15.11.2022 und 01.06.2023) oder webbasierten (05.10.2023) strukturierten Konsensuskonferenzen im NIH-Typ unter neutraler Moderation durch Herrn PD Dr. Sitter. Eine ausführliche Beschreibung der strukturierten Konsensusfindung finden Sie im Leitlinienreport dieser Leitlinie.

2.3.3 Empfehlungsgraduierung und Feststellung der Konsensusstärke

Festlegung des Empfehlungsgrades

Neben der methodisch aufbereiteten Qualität und dem Nutzen-Schaden-Verhältnis wurden ethische, rechtliche, ökonomische Verpflichtungen; Patientenpräferenzen; die Umsetzbarkeit im Alltag und in verschiedenen Versorgungsbereichen bei der Graduierung der Empfehlung berücksichtigt. In Tabelle 7 ist die verwendete Empfehlungsgraduierung dargestellt.

Tabelle 7. Dreistufiges Schema zur Graduierung von Empfehlungen

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Beschreibung</th>
<th>Ausdrucksweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Starke Empfehlung</td>
<td>Soll/Soll nicht</td>
</tr>
<tr>
<td>B</td>
<td>Schwache Empfehlung</td>
<td>Sollte/Sollte nicht</td>
</tr>
<tr>
<td>0</td>
<td>Empfehlung offen</td>
<td>Kann erwogen/verzichtet werden</td>
</tr>
</tbody>
</table>

Festlegung der Konsensusstärke

Die Konsensstärke wurde gemäß Tabelle 8 klassifiziert. Von einem Konsens wird bei einer Zustimmung über 75 % ausgegangen.

Tabelle 8. Feststellung der Konsensusstärke

<table>
<thead>
<tr>
<th>Klassifikation der Konsensstärke</th>
<th>Verhältnis der Stimmberechtigten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starker Konsens</td>
<td>> 95 % der Stimmberechtigten</td>
</tr>
<tr>
<td>Konsens</td>
<td>>75-95 % der Stimmberechtigten</td>
</tr>
<tr>
<td>Mehrheitliche Zustimmung</td>
<td>≥50-75 % der Stimmberechtigten</td>
</tr>
<tr>
<td>Keine mehrheitliche Zustimmung</td>
<td><50 % der Stimmberechtigten</td>
</tr>
</tbody>
</table>
2.3.4 Statements

2.3.5 Expertenkonsens

2.4 Umgang mit Interessenkonflikten

Die Angaben zu den Interessen wurden mit dem AWMF-Formblatt von 2018 erhoben und zuletzt 2023 überprüft. PD Dr. Jessica Rademacher und PD Dr. Helmut Sitter haben die Interessen auf einen thematischen Bezug zur Leitlinie bewertet.

Als protektive Faktoren, die einer Verzerrung durch Interessenkonflikte entgegenwirken, können die pluralistische Zusammensetzung der Leitliniengruppe, die strukturierte Konsensfindung unter neutraler Moderation, die Diskussion zu den Interessen und Umgang mit Interessenkonflikten zu Beginn der Konsenskonferenz und eine öffentliche Konsultationsfassung gewertet werden.

An dieser Stelle möchten wir allen beteiligten Mandatsträgern für ihre ausschließlich ehrenamtliche Mitarbeit an dem Projekt danken. Zudem möchten wir Herrn Prof. Frank Brunkhorst als Vertreter der Patientenorganisation Deutsche Sepsis Hilfe (DSH) danken. Ein weiterer Dank geht an Dr. Susanne Simon für die Erstellung der Abbildung und das Korrekturlesen der Leitlinie.

2.5 Externe Begutachtung und Verabschiedung

2.6 Redaktionelle Hinweise

Aus Gründen der besseren Lesbarkeit wird auf die gleichzeitige Verwendung männlicher und weiblicher Sprachformen verzichtet. Sämtliche Personenbezeichnungen gelten gleichwohl für beiderlei Geschlecht.

3 Einführung und Epidemiologie

Die nosokomiale Pneumonie (ICD-10-Code U69.01) gehört zu den häufigsten nosokomialen Infektionen in Europa. Nach den Daten der ersten europäischen Prävalenzerhebung 2011 hat die Pneumonie bzw. die Infektion der unteren Atemwege mit 26 % den größten Anteil unter allen Infektionen, die sich während eines stationären Aufenthaltes entwickeln (7). In epidemiologischen Untersuchungen, wie beispielsweise der europäischen Prävalenzerhebung, werden die Pneumonien und die Infektionen der unteren Atemwege meist zusammengefasst, da die im Rahmen der Erhebung zur Verfügung stehenden Informationen eine exakte Unterscheidung nicht immer ermöglichen. Auf Intensivstationen liegt der Anteil, den die Pneumonie/Infektion der unteren Atemwege unter allen nosokomialen Infektionen hat, sogar bei über 40 % (8). Die erneute Prävalenzerhebung in 2016 bestätigte die Pneumonie/Infektion der unteren Atemwege dann auch für Deutschland als häufigste nosokomiale Infektion (9). Auf europäischer Ebene sind 33 % (10) und in Deutschland 35 % (11) aller nosokomialen Pneumonien mit einer maschinellen Beatmung assoziiert.

Eine Studie zur Bedeutung von nosokomialen Infektionen, welche die europäischen Prävalenzdaten und Daten zu den Folgen von nosokomialen Infektionen aus der internationalen Literatur nutzte, identifizierte die nosokomiale Pneumonie auch als die folgenreichste Infektionsart (13). Hierfür wurden sog. DALYs (behinderungsadjustierte Lebensjahre als Summe aus vorzeitigem Tod bzw. Einbußen der Lebensqualität durch Behinderung) berechnet. Allein die nosokomiale Pneumonie verursacht in Europa demnach 169 solcher DALYs pro 100.000 Einwohner und ist damit schon für ein Drittel der durch nosokomiale Infektionen verursachten „behinderungsadjustierten Lebensjahrverluste“ verantwortlich.

4 Definition

Für die Pneumonie existieren verschiedene epidemiologische Einteilungen entsprechend ihrer Assoziation zu einem Krankenhausaufenthalt, zu einer Beatmung und zur zeitlichen Einteilung des Auftretens (Tabelle 9). Diese Unterscheidungen werden getroffen, um die wahrscheinliche Ätiologie und damit verbunden, die unterschiedlichen Aspekte hinsichtlich Prävention, Diagnostik und Therapie, besser berücksichtigen zu können.

Häufig werden die HAP (hospital-acquired pneumonia; im Krankenhaus erworbene Pneumonie), die VAP (ventilator-acquired pneumonia; beatmungsassozierte Pneumonie), die early onset (früh auftretende) und late onset (später auftretende) Pneumonie unterschieden.
Bei nosokomialen Pneumonien unter schwerer Immunsuppression gelten die Behandlungsregeln der schweren Immunsuppression. So sind bei Immunsupprimierten auch Erreger zu berücksichtigen, die sonst nicht regelhaft zu erwarten sind. Die vorliegende Leitlinie betrifft entsprechend nicht Patienten mit nosokomialen Pneumonien unter schwerer Immunsuppression.

4.1 Definition der nosokomialen Pneumonie

Wichtig ist noch zu beachten, dass im Infektionsschutzgesetz (IfSG) eine hiervon abweichende Definition für nosokomiale Infektionen existiert, welche u.a. bei der Meldepflicht für nosokomiale Infektionsausbrüche zur Anwendung kommen muss.

4.2 Definition der Ventilator-assoziierten Pneumonie
Bei der beatmungsassoziierten Pneumonie (engl. ventilator-acquired pneumonia - VAP) handelt es sich um eine Pneumonie, die sich in Folge einer maschinellen Beatmung entwickelt. Im NHSN und KISS wird eine HAP als VAP definiert, wenn vor der Pneumonie mindestens 3 Kalendertage eine maschinelle Beatmung (unterschiedliche Druckniveaus in In- und Exspiration) über einen Endotrachealtubus oder ein Tracheostoma stattgefunden hat. Mindestens ein Drittel aller nosokomialen Pneumonien (HAP) sind VAP, entwickeln sich also im Verlauf während einer maschinellen Beatmung (7,15). Da sich, wie bei allen nosokomialen Infektionen, die sich im Gefolge einer Device-Anwendung entwickeln, entsprechende Präventionsmaßnahmen im Zusammenhang mit dem Device (in diesem Fall der Beatmung) ergeben, kann die Ermittlung der VAP-Häufigkeit wichtige Hinweise zur Prävention liefern. Zudem ist im Vergleich zur CAP oder der nicht beatmungsassoziierten HAP aufgrund der Ätiologie grundsätzlich mit einer höheren Morbidität und Mortalität zu rechnen. Vor allem unterscheidet sich aber das Erregerspektrum, welches für Diagnostik- und Therapieentscheidungen berücksichtigt werden muss.

4.3 Early onset and late onset nosokomiale Pneumonie
Die HAP und VAP können noch weiter in early onset und late onset unterschieden werden (16), um die das zu erwartende Erregerspektrum zu prädizieren. Zur Unterscheidung zwischen early und late onset Pneumonie
wird eine Zeitgrenze verwendet. Unterschiedliche Autoren haben zwischen >3 bis ≥7 Tagen als Grenze zwischen early und late onset verwendet, wobei der Tag 5 (< Tag 5 = early onset; ≥ Tag 5 = late onset), entweder bezogen auf den stationären Aufenthalt (HAP) oder auf den Beatmungstag (VAP) am häufigsten zur Anwendung kommt (17–19). Es handelt sich hierbei allerdings um eine Differenzierung, deren weitere Unterscheidungsmöglichkeiten (zusätzlich zur Unterscheidung CAP vs. HAP bzw. HAP vs. VAP) allein dadurch sehr begrenzt sind, dass bereits die Definitionen für CAP/HAP bzw. HAP/VAP Zeitgrenzen definieren und diese sich nur marginal durch eine 5 Tagesgrenze weiter differenzieren lassen. Early onset HAP sind somit Pneumonien, die an Tag 3 oder 4 auftreten, während late onset HAP dann alle ab Tag 5 auftretenden HAP sind. Daher wird in dieser Leitlinie auf die Unterscheidung in early onset/late onset verzichtet. Alternativ werden verschiedene Risikofaktoren für das Vorliegen von MRE definiert, zu denen die late onset HAP (≥5 Tage nach Hospitalisation) gehört.

Tabelle 9. Definition der HAP und deren Subgruppen

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Krankenhaus erworbene Pneumonie - HAP (engl. hospital-acquired pneumonia)</td>
<td>Später als 48 Stunden nach Aufnahme in ein Krankenhaus auftretende Pneumonie</td>
</tr>
<tr>
<td>Subgruppen der HAP</td>
<td></td>
</tr>
<tr>
<td>Beatmungsassozierte Pneumonie – VAP (engl. ventilator-acquired pneumonia)</td>
<td>Eine während einer maschinellen Beatmung über Endotrachealtubus oder Tracheostoma erworbene Pneumonie (eine Pneumonie, die sich während einer nicht-invasiven Beatmung entwickelt, zählt nicht zu den VAP)</td>
</tr>
<tr>
<td>Early onset HAP (bzw. VAP)</td>
<td>Eine frühestens 49 Stunden bis maximal Tag 4 nach Aufnahme in ein Krankenhaus/nach Beginn einer invasiven Beatmung auftretende HAP/VAP</td>
</tr>
<tr>
<td>Late onset HAP (bzw. VAP)</td>
<td>Eine ab Tag 5 nach Aufnahme in ein Krankenhaus/nach Beginn einer invasiven Beatmung auftretende HAP/VAP</td>
</tr>
</tbody>
</table>

4.3 Weitere Gruppen der nosokomialen Pneumonie

Es existieren weitere HAP-Subgruppen wie z.B. vHAP (die beatmungspflichtige HAP) oder die zu einer nicht invasiven Beatmung assoziierten HAP, welche in dieser Leitlinie mit zu den HAP gezählt werden. Beide Subgruppen werden im Folgenden nicht gesondert betrachtet. Abzugrenzen ist zudem die beatmungsassozierte Tracheobronchitis (VAT), ohne Infektion des Lungenparenchym, welche nicht Gegenstand dieser Leitlinie ist.

5 Erregerspektrum und Resistenz

5.1 Erregerspektrum

Bakterien sind die häufigsten Erreger nosokomialer Pneumonien, Pilze und Viren werden bei immunkompetenten Patienten nur selten als Erreger identifiziert. Aerobe und fakultativ anaerobe gramnegative Stäbchenbakterien (Enterobacterales und *P. aeruginosa*) werden am häufigsten nachgewiesen. Bei den grampositiven Erregern dominieren *Staphylococcus aureus* und *Streptococcus pneumoniae* (Tabelle 10).
Tabelle 10. Bakterielle Infektionserreger der nosokomialen Pneumonie

<table>
<thead>
<tr>
<th>Patienten ohne Risikofaktoren für multiresistente Erreger (MRE) oder P. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacterales (z.B.)</td>
</tr>
<tr>
<td>- E. coli</td>
</tr>
<tr>
<td>- Klebsiella spp.</td>
</tr>
<tr>
<td>- Enterobacter spp.</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>S. aureus</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
</tr>
</tbody>
</table>

zusätzlich bei Patienten mit Risikofaktoren für multiresistente Erreger (MRE) oder P. aeruginosa

<table>
<thead>
<tr>
<th>Resistente Enterobacterales (z.B. ESBL-Bildner)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
</tr>
</tbody>
</table>

Seltener:

<table>
<thead>
<tr>
<th>Methicillin-resistente Staphylococcus aureus (MRSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
</tr>
</tbody>
</table>

Gute verfügbare Daten zum Erregerspektrum der nosokomialen Pneumonie in Deutschland liefert das Krankenhaus-Infektions-Surveillance-System (KISS) des Nationalen Referenzzentrums für die Surveillance nosokomialer Infektionen (NRZ) (Tabelle 11).

Tabelle 11. Erregerspektrum bei nosokomialer Pneumonie (KISS 2017 - 2021) (15)

<table>
<thead>
<tr>
<th>Erregerspektrum bei Atemwegsinfektionen nicht invasiv beatmeter (NIV) Patienten</th>
<th>Erregerspektrum bei Atemwegsinfektionen invasiv beatmeter (NIV) Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakterien 55,7 %</td>
<td>Bakterien 79,2 %</td>
</tr>
<tr>
<td>45,2 % gramnegativ, 15,8 % grampositiv</td>
<td>65,5 % gramnegativ, 22 % grampositiv</td>
</tr>
<tr>
<td>3MRGN 3 %, 4MRGN 0,8 %</td>
<td>3MRGN 5,1 %, 4MRGN 1,6 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bakterien 55,7 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>- S. aureus 11,4 % (davon 2,5 % MRSA)</td>
</tr>
<tr>
<td>- K. pneumoniae 8,5 % (davon 0,6 % 3MRGN)</td>
</tr>
<tr>
<td>- E. coli 10,5 % (davon 0,8 % 3MRGN)</td>
</tr>
<tr>
<td>- P. aeruginosa 7,8 % (davon 0,8 % 4MRGN)</td>
</tr>
<tr>
<td>- E. cloacae 3,6 % (davon 0,5 % 3MRGN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bakterien 79,2 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>- S. aureus 17,1 % (davon 2,4 % MRSA)</td>
</tr>
<tr>
<td>- K. pneumoniae 11,7 % (davon 1,1 % 3MRGN)</td>
</tr>
<tr>
<td>- E. coli 13,6 % (davon 1,5 % 3MRGN)</td>
</tr>
<tr>
<td>- P. aeruginosa 13,3 % (davon 1 % 4MRGN)</td>
</tr>
<tr>
<td>- E. cloacae 4,9 % (davon 0,2 % 3MRGN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pilze 5,6 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viren 1,2 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pilze 5,3 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viren 0,3 %</td>
</tr>
</tbody>
</table>

Tabelle 12. Erregerspektrum der nosokomialen Pneumonie in verschiedenen geographischen Regionen

<table>
<thead>
<tr>
<th>Erreger</th>
<th>SENTRY 2016-2019</th>
<th>NRZ 2017-2021</th>
<th>ECDC ICU 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>West-Europa</td>
<td>USA</td>
<td>Ost-Europa</td>
</tr>
<tr>
<td>S. aureus</td>
<td>20,1 %</td>
<td>27,3 %</td>
<td>9,1 %</td>
</tr>
<tr>
<td>Klebsiella spp</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>9,2 %</td>
<td>8,1 %</td>
<td>19,3 %</td>
</tr>
<tr>
<td>E. coli</td>
<td>12,7 %</td>
<td>6,4 %</td>
<td>6,1 %</td>
</tr>
<tr>
<td>S. marcescens</td>
<td>4,3 %</td>
<td>4,3 %</td>
<td>2,3 %</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>20,6 %</td>
<td>24,3 %</td>
<td>27,2 %</td>
</tr>
<tr>
<td>Enterobacter spp</td>
<td>5,5 %</td>
<td>3,9 %</td>
<td>2,9 %</td>
</tr>
<tr>
<td>E. cloacae</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>1,9 %</td>
<td>2,8 %</td>
<td>19 %</td>
</tr>
<tr>
<td>S. maltophilia</td>
<td>3,2 %</td>
<td>4,7 %</td>
<td>3,9 %</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>2,4 %</td>
<td>3 %</td>
<td>---</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>---</td>
<td>1,8 %</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Die Infektionen sind häufig monobakteriell, allerdings kommen polymikrobielle Infektionen durchaus vor (z. B. 32 % (22), 16 % (25), 20,5 - 24,5 % (24)). Am häufigsten war eine Infektion mit zwei Erregern, vor allem bei der VAP. In einer neueren Studie von Zilberberg et al. (26) lag die Infektionsrate mit mehr als zwei Erregern zwischen 11,7 und 17,8 % (NIV-HAP 11,7 %, INV-HAP 15,2 %, VAP 17,8 %), Infektionen mit mehr als drei Erregern waren selten (NIV-HAP 1,3 %, INV-HAP 1,5 %, VAP 1,9 %). Die polymikrobielle Ätiologie hatte keinen Einfluss auf die Prognose und den Krankheitsverlauf der Pneumonie.

Aspergillus spp., in der Regel *A. fumigatus*, sind als Erreger einer nosokomialen Pneumonie bei immunkompetenten Patienten selten. Als Risikofaktoren auch bei nicht schwergradig immunsupprimierten Patienten gelten Leberzirrhose, Neutropenie, langfristige Therapie mit Steroiden (> 4 Wochen > 20 mg Prednisolon oder Äquivalent), COPD oder rheumatologische Grunderkrankungen.

Bakterien der normalen Schleimhautflora der oberen Luftwege (Tabelle 13) haben als Pneumonie-Erreger keine Bedeutung, auch wenn sie in größerer Menge in einem invasiv gewonnenen Atemwegsmaterial nachgewiesen werden.

Tabelle 13. Bakterien und Pilze der oropharyngealen Standortflora ohne Relevanz bei nosokomialer Pneumonie.

<table>
<thead>
<tr>
<th>Apathogene Corynebacterium spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterokokken (E. faecalis, E. faecium)</td>
</tr>
<tr>
<td>Koagulase-negative Staphylokokken</td>
</tr>
<tr>
<td>Alpha-hämolysierende (vergrünende) Streptokokken</td>
</tr>
<tr>
<td>Apathogene Neisseria spp.</td>
</tr>
<tr>
<td>Candida spp.</td>
</tr>
</tbody>
</table>
1. Best practice Statement

| Die Diagnostik von Mikroorganismen der oropharyngealen Standortflora sollte auf Genusebene (Bakterien) bzw. Speziesebene (Hefepilze) beschränkt werden. Auf eine Resistenzbestimmung soll verzichtet werden, um Fehltherapien zu vermeiden. |

5.2 Risikofaktoren für eine nosokomiale Pneumonie mit multiresistenten Erregern

Wie sollte das Risiko einer nosokomialen Pneumonie in der kalkulierten Therapie eingeschätzt werden?

1. Empfehlung

| Experten- konsens | Für das Management und die initiale, kalkulierte antimikrobielle Therapie der nosokomialen Pneumonie soll zwischen Patienten mit und ohne Risikofaktoren für multiresistente Erreger und Pseudomonas aeruginosa unterschieden werden (siehe Tabelle 14). Das Erregerspektrum und die Resistenzsituation der jeweiligen Station/Einrichtung soll in Abständen von 6-12 Monaten erhoben und dargestellt sowie diese Daten für Entscheidungen zur kalkulierten Antibiotikatherapie herangezogen werden. Starke Empfehlung |

Starker Konsens

Tabelle 14. Therapierelevante Risikofaktoren für multiresistente Infektionserreger bei der HAP

| Antimikrobielle Therapie (>24h) in den letzten 30 Tagen |
| Hospitalisierung ≥ 5 Tage vor Krankheitsbeginn |
| Kolonisation durch gramnegative MRE oder MRSA * |
| Septischer Schock |
| ARDS |
| Hämodialyse |
| Medizinische Versorgung in einem Hochprävalenzland für gramnegative MRE und MRSA innerhalb der letzten 12 Monate |
| Zusätzliche Risikofaktoren für P. aeruginosa |
| Strukturelle Lungenerkrankung (fortgeschrittene COPD, Bronchiektasen) |
| Bekannte Kolonisation durch P. aeruginosa |
Die Mehrzahl der Patienten mit einer derartigen Kolonisation werden keine HAP/VAP durch diese Erreger aufweisen.

Als wichtigster Risikofaktor für MRE bei der VAP wurde eine vorausgegangene intravenöse antimikrobielle Therapie innerhalb der letzten 30 Tage vor Pneumoniebeginn identifiziert (17, 37, 38). Trouillet et al. untersuchten 135 ITS-Patienten mit VAP und unterschiedlicher Beatmungsdauer von < 7 Tage vs. > 7 Tage, jeweils mit vorheriger bzw. ohne intravenöse Antibiotikagabe. Von diesen Patienten waren 77 (57 %) mit potentiell resistenten Bakterien infiziert, am höchsten war die Besiedelungsrate bei Patienten mit Antibiotikatherapie (17). Die Multivariatanalyse ergab als höchstes MRE-Risiko die vorhergegangene Antibiotikatherapie (OR 13,5) und die Beatmungsdauer von > 7 Tagen (OR 6,0). Auch in der Studie von Depuydt et al. ergab die multivariate Analyse das höchste MRE-Risiko für Patienten, die vor der Pneumonie mit zwei verschiedenen Antibiotikaklassen therapiert worden waren (37). In einer Metaanalyse war die vorausgegangene intravenöse Antibiotikatherapie mit dem höchsten MRE-Risiko bei VAP assoziiert (OR 12.3 für MRE-VAP; OR 5.17 für MRE-HAP) (38). Bei der Antibiotikatherapie handelte es sich um Breitspektrum-Antibiotika.

Die Daten für die nicht ventilte HAP sind spärlich (39, 40). Seligman et al. untersuchten nicht beatmete Risikopatienten mit HAP (z. B. COPD, chron. Niereninsuffizienz, kongestive Herzerkrankung) (39). Von 140 Patienten waren 42 % mit MRE infiziert (MRSA [64 %], Enterobacter spp. [13,6 %], Klebsiella spp. [12 %]). Die multivariate Analyse der Risikofaktoren für MRE ergab nur eine Antibiotikatherapie mit Breitspektrumantibiotika innerhalb von 10 Tagen vor Beginn der Pneumonie (p = 0,001). Leroy et al. untersuchten Patienten mit HAP und VAP auf Risiken für MRE: 90 Patienten hatten vor Pneumoniebeginn intravenös Antibiotika bekommen (< 1 Monat). Bei diesen Patienten konnten in 61,5 % der Fälle "potentiell resistente Bakterien" (P. aeruginosa, Acinetobacter spp., S. maltophilia, MRSA) und in 30,3 % der Fälle resistente Bakterien nachgewiesen werden, im Vergleich zu 17,8 % und 6,7 % bei Patienten ohne vorherige Antibiotikatherapie (40).

In einigen Studien war der Schweregrad der Erkrankung (septischer Schock, akute Organdysfunktion, ARDS) lediglich univariat mit dem Nachweis von MRE bei VAP assoziiert (17, 37). Es wird dennoch vornehmlich aus prognostischen Gründen empfohlen, Patienten mit Sepsis-assoziiert Organdysfunktion eine Initialtherapie, die potentielle MRE erfasst, zukommen zu lassen.

In einer Studie von Carbonne et al. lagen die positiv prädiktiven Werte (PPV) ESBL-Bildner-positiver Rektumabstriche als Prädiktoren für die potenzielle respiratorische Besiedlung bei Entnahme von ≤ 5 Tagen nach Aufnahme bei 14,5 % und bei Entnahme später als fünf Tage bei 34,4 %. Die negativ prädiktiven Werte (NPV) lagen bei 99,2 % und 93,4 % (46). Bruyère et al. screenen beatmeten Patienten bei Aufnahme, dann wöchentlich, auf ESBL-positive Bakterien (Rektumabstriche) als Prädiktoren für eine potenzielle VAP. Von 587 Patienten mit V. a. VAP waren 40 (6,8 %) vor Pneumoniebeginn mit ESBL-positiven Enterobacterales besiedelt und 20 Patienten (3,4 %) entwickelten eine VAP (47). Der positiv prädiktive Wert (PPW) lag bei 41,5 %, der negative (NPW) bei 99,4 %. In einer systematischen Übersichtsarbeit werden positiv prädiktive Werte zwischen 3,2 % und 25,7 % angegeben, wobei in den zugrundeliegenden Studien v.a. die Bakteriämie durch ESBL-Bildner unabhängig vom Fokus erfasst wurde und die Studien einen wesentlichen Anteil an immunsupprimierten Patienten enthielten (48).

In einem systematischen Review wurden als Risikofaktoren für Infektionen durch Carbapenem-resistente Gramnegative Erreger – P. aeruginosa, A. baumannii, K. pneumoniae, andere Enterobacterales – die Kolonisation im Respirationstrakt, aber auch im Rektum, eine vorherige Antibiotikatherapie, insbesondere eine Carbapenem-Therapie sowie ein (längerer) Aufenthalt auf einer Intensivstation identifiziert (49).

Als spezifischer Risikofaktor für nosokomiale Pneumonien durch P. aeruginosa wurde neben einer nachgewiesenen chronischen Atemwegsinfektion (49,50) das Vorliegen schwerer struktureller Lungenerkrankungen (schwere COPD, Bronchiektasen) identifiziert (51,52). In einer prospektiven Studie war darüber hinaus der Intensivaufenthalt von mehr als 29 Tagen ein Hauptsrisikofaktor (53).

Bei Nachweis einer MRSA-Kolonisation betrug der positiv prädiktive Wert für eine MRSA-Pneumonie in Studien zwischen 18 % und 35 % (54–56); eine Metaanalyse fand bei > 60.000 ITS-Patienten einen positiven prädiktiven Wert des nasalen MRSA-Nachweises von 25 % (RR 8.3) für eine nachfolgende Infektion (nicht nur Pneumonie) mit MRSA (57).

Somit kann eine Kolonisation mit MRSA und gramnegativen MRE als Risikofaktor für Infektionen bzw. Pneumonien mit MRE angesehen werden. Die Integration der Screeningbefunde in den klinischen Kontext (Erkrankungsschwere, weitere Risikofaktoren), die Durchführung einer adäquaten Erregerdiagnostik und die Deeskalation der Therapie nach Eingang mikrobiologischer Befunde sind daher von besonderer Bedeutung.

In der europäischen Leitlinie werden als Risikofaktoren für MRE vor allem schwerwiegende Erkrankungen wie z. B. septischer Schock, ARDS und eine hohe lokale Rate an MRE (> 25 %) sowie individuelle Risiken betont (59).

Einerseits unterscheidet sich das Erregerspektrum in den Studien in geografischer Abhängigkeit (Tabelle 11, Tabelle 12), andererseits gibt es Differenzen in der Antibiotika-Empfindlichkeit zwischen Regionen und Zentren (20,60). Mithin ist es nicht möglich, aus publizierten Daten zur Antibiotikaempfindlichkeit Rückschlüsse auf die lokale Situation zu ziehen. Aus diesem Grunde sollen lokale Empfindlichkeitsdaten zur Therapieplanung
Die Erhebung erfolgt idealerweise bezogen auf die bei HAP nachgewiesenen Erreger, mindestens aber auf solche, die in Atemwegsmaterialien nachgewiesen wurden.

6 Diagnostik

6.1 Klinische Diagnose der nosokomialen Pneumonie

Wie wird eine HAP klinisch diagnostiziert und welche Differenzialdiagnosen sind zu beachten?

<table>
<thead>
<tr>
<th>2. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>Therapierelevant ist bereits die Verdachtsdiagnose einer HAP, diese soll gestellt werden bei neuem, persistierendem oder progredientem Infiltrat in der Thorax-Röntgenaufnahme in Kombination mit 2 von 3 weiteren Kriterien:</td>
</tr>
<tr>
<td>- Leukozyten > 10 000 oder < 4000 /µl,</td>
</tr>
<tr>
<td>- Fieber > 38,3 °C,</td>
</tr>
<tr>
<td>- purulentes Sekret.</td>
</tr>
</tbody>
</table>

Starke Empfehlung

Differenzialdiagnostisch **sollen** u.a. Atelektasen (Sekretverlegung), Herzinsuffizienz/Überwässerung, Lungenarterienembolien, alveoläre Hämorrhagie, interstitielle Lungenerkrankungen wie eine organisierende Pneumonie (OP) und das ARDS abgegrenzt werden.

Schwache Empfehlung

Die klinische Diagnose einer HAP ist schwierig. Es gibt keine allgemein akzeptierten Kriterien auf der Basis randomisierter Studien, sondern lediglich prospektive Kohortenanalysen. Die Inzidenz der VAP variiert stark in Abhängigkeit von den eingesetzten Diagnosekriterien (62). Therapierelevant ist die klinisch zu stellende Verdachtsdiagnose einer HAP.

Die in der 1. Empfehlung genannten Kriterien von Johanson et al. (Infiltrat in Kombination mit 2–3 weiteren Kriterien) werden in den meisten Leitlinien verwendet und sind in einer prospektiven Kohortenanalyse an 25 verstorbenen beatmeten Patienten validiert worden (36,63). In dieser lag die histologisch überprüfte Sensitivität bei 69 % und die Spezifität bei 75 % (64). Fagon et al. konnte 1993 in einer Studie an 84 beatmeten Patienten zeigen, dass die klinische Diagnose in 62 % eine VAP korrekt vorhersagt, und bei 84 % korrekt keine VAP diagnostiziert wurde (65). In allen Studien liegen Sensitivität und Spezifität dieser Kriterien bei ca. 70 %, sodass etwa 30 % der HAP-Patienten nicht erkannt werden und bei ca. 30 % eine andere Diagnose als eine HAP vorliegt. Kritisch zu bedenken ist zudem, dass die Beurteilung des Röntgenbildes einer Interobservervariabilität unterliegt (66) und im klinischen Alltag etwa 1/3 der Patienten, die als V. a. HAP diagnostiziert werden, die oben beschriebenen radiologischen Veränderungen (Infiltrate) objektiv nicht erfüllen (67,68). Der Einsatz mikrobiologischer Kriterien zur Diagnose einer HAP verbesserte die Sensitivität und Spezifität (64).

Andere Autoren konnten zeigen, dass postoperative Patienten mit der klinischen Diagnose HAP (beruhend auf diesen Kriterien) eine höhere Letalität hatten als Patienten ohne Verdacht auf HAP (8 von 46, 17 % vs. 16 von 306, 5 %, p = 0,046) (69).

Insbesondere bei schwerer HAP sollten die klinischen Kriterien der Sepsis beachtet werden (70). Zeichen der Sepsis oder des septischen Schocks sind jedoch nicht spezifisch für eine HAP. Insgesamt ist die klinische Diagnose der HAP eine Arbeitsdiagnose, die für die zeitnahe Einleitung einer kalkulierten antimikrobiellen Therapie und die differenzialdiagnostische Abklärung erforderlich sind.
Therapie relevant ist und der regelmäßigen Überprüfung bedarf. In diesem Zusammenhang sind die aufgeführten Differenzialdiagnosen zu bedenken.

<table>
<thead>
<tr>
<th>Welche Rolle spielen Scores in der Risikobeurteilung der HAP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Empfehlung</td>
</tr>
<tr>
<td>Experten-konsens</td>
</tr>
<tr>
<td>Bei der klinischen Diagnose der HAP sollen</td>
</tr>
<tr>
<td>- alle Patienten auf das Vorliegen einer Sepsis evaluiert werden.</td>
</tr>
<tr>
<td>- außerhalb der Intensivstation mindestens die Bestimmung der Vitalparameter unter Verwendung der qSOFA-Kriterien und der Sauerstoffsättigung erfolgen.</td>
</tr>
<tr>
<td>- auf Intensivstationen Sepsis-Scores wie der „Sequential Organ Failure Assessment“ (SOFA) Score zur Risikoprädiktion angewandt werden.</td>
</tr>
<tr>
<td>Starke Empfehlung</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die Letalität von Patienten mit HAP ist abhängig von verschiedenen Faktoren. Prognostisch negative Einzelfaktoren sind eine initiale Bakteriämie und die Schwere der akuten Lungenschädigung. Alle Patienten sollen zudem auf das Vorliegen einer Sepsis evaluiert werden (70). Als Screeningscore außerhalb der Intensivstation wurde dafür der qSOFA-Score evaluiert (systolischer Blutdruck ≤ 100 mmHg, Atemfrequenz ≥ 22 /min, Bewusstseinsstörung; ≥ 2 Kriterien sprechen für das Vorliegen einer Sepsis) (70,71). Bei Patienten mit manifester Sepsis korreliert die Sterblichkeit mit den Organdysfunktionen. Bei diesen Patienten sollen Scores angewandt werden, welche den Schweregrad der Sepsis und die Organdysfunktion messen (SOFA, MODS, SAPS, APACHE-II) (71–74). Der SOFA-Score wird von der aktuellen Konsensusdefinition der Sepsis (Sepsis-3) als prognostischer Marker und zur Definition der Sepsis auf der Intensivstation (bei Anstieg um ≥ 2 Punkte) empfohlen (70). Der quick SOFA-Score sollte auf der Intensivstation nicht verwendet werden (71).

In einer aktuellen Metaanalyse verschiedener Scores zur Letalitätsprädiktion bei VAP zeigte sich kein Vorteil diverser VAP-spezifischer Scores, die beste Datenlage existiert zu den etablierten Scores APACHE-II, SAPS und SOFA (74).

6.2 Biomarker

<table>
<thead>
<tr>
<th>Welche Rolle spielen Biomarker für die Diagnose der HAP und die Diagnose der Sepsis im Rahmen der HAP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Empfehlung</td>
</tr>
<tr>
<td>Experten-konsens</td>
</tr>
<tr>
<td>Die Diagnose der HAP beruht auf klinischen, radiologischen und ggf. mikrobiologischen Kriterien, ausreichende Evidenz für eine zusätzliche unabhängige diagnostische Aussagekraft von Biomarkern liegt nicht vor.</td>
</tr>
<tr>
<td>Die Bestimmung eines Entzündungsparameters (C-reaktives Protein (CRP) oder Procalcitonin (PCT)) sollte bei Diagnose erfolgen, um eine Verlaufsbeurteilung zu ermöglichen.</td>
</tr>
<tr>
<td>Schwache Empfehlung</td>
</tr>
</tbody>
</table>
Bei Verdacht auf eine Sepsis im Rahmen der HAP sollen die Laborparameter zur Bestimmung des SOFA-Scores (Thrombozyten, Bilirubin, Kreatinin) sowie Laktat ermittelt werden.

Starker Konsens

Darüber hinaus ist in Analogie zur CAP die klinisch angepasste Evaluation einer akuten Organdysfunktion unter Einschluss spezifischer Laborparameter insbesondere bei Patienten mit Komorbiditäten (z.B. kardial, pulmonal, hepatisch, renal, Diabetes mellitus) notwendig, da die Pneumonie zur Dekompensation bestehender Grunderkrankungen führen kann (14).

Bei Pneumonie durch SARS-CoV-2 sind verschiedene Biomarker wie CRP, LDH, Ferritin, Transaminasen, Lymphozyten und D-Dimere mit der Prognose im Krankenhaus assoziiert; wichtigster prognostischer Marker ist jedoch die akute respiratorische Insuffizienz (94). Bei differentialdiagnostischen Unsicherheiten und erhöhten D-Dimeren sollte großzügig eine Anglo-CT des Thorax durchgeführt werden (94). Zu aktuellen Empfehlungen wird auf die entsprechende Leitlinie verwiesen (94).
6.3 Mikrobiologische Diagnostik

6.3.1 Bakteriologische Diagnostik

<table>
<thead>
<tr>
<th>Welche konventionellen mikrobiologischen Untersuchungen sollten aus respiratorischen Materialien durchgeführt werden?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Empfehlung</td>
</tr>
<tr>
<td>Experten-konsens</td>
</tr>
<tr>
<td>Starke Empfehlung</td>
</tr>
<tr>
<td>Schwache Empfehlung</td>
</tr>
<tr>
<td>Empfehlung offen</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Bei HAP nicht beatmeter Patienten werden insgesamt in 9,3 %, bei S. pneumoniae-Infektionen in 11,4 % positive Blutkulturen gefunden (95). Bei VAP liegt eine Studie bei 162 Patienten vor (96). Blutkulturen waren in insgesamt 27 Fällen (16 %) positiv, wobei dies deutlich häufiger der Fall war, wenn die BALF ebenfalls positiv war (22/90 gegen 5/72 Fälle). Allerdings waren Erreger in der Blutkultur in 6/22 Fällen auf eine extrapulmonale Quelle zurückzuführen. Insgesamt hatte eine positive Blutkultur damit einen prädiktiven Wert von 73 % für den Nachweis eines Pneumonie-Erregers; eine Assoziation mit der Schwere der Erkrankung konnte nicht verifiziert werden. Die Blutkultur bleibt der Goldstandard für die Diagnose der bakteriämischen Pneumonie. Darüber hinaus ist sie wertvoll für die Therapiesteuerung und die Diagnose extrapulmonaler Infektionsquellen. Zur Technik der Blutkulturabnahme wird auf die nationale Sepsis-Leitlinie verwiesen (89).

Pneumokokken sind bei 5,1 % nosokomialer Pneumonien (10,3 % bei early onset Pneumonie, 3,3 % bei late onset Pneumonie) in respiratorischen Materialien kulturell nachweisbar (100). Über die Aussagekraft eines Antigen-Nachweises im Urin bei der HAP liegen wenig Daten vor (100).

Zur Diagnostik der HAP liegen zahlreiche Untersuchungen vor. Viele dieser Studien sind unter hohem Aufwand und methodisch hochwertig durchgeführt worden. Die Ergebnisse können wie folgt zusammengefasst werden:

1. Nur quantitative (oder semiquantitative) Kulturen ergeben ein zusätzliches Kriterium für die Einschätzung der Wahrscheinlichkeit des Vorliegens einer Pneumonie.

Die Untersuchungen bei Verdacht auf HAP werden wie folgt bewertet:

Färbungen

Es sollte die Qualität des TBAS bzw. der BALF validiert werden. Mehr als 25 polymorphkernige Granulozyten sowie weniger als 10 Plattenepithelen pro Blickfeld sprechen für ein Material, das repräsentativ für die tiefen Atemwege ist. In einer Studie (101) mit 200 HAP-Patienten von sechs Intensivstationen in Spanien wurde die Aussagekraft nicht-invasiver (Sputum und endotracheales Aspirat) und invasiver (Lavage oder bronchokopisches Aspirat) Materialien miteinander verglichen. Ein Erregernachweis gelang häufiger (56 % vs. 39 %, p=0,018) in der Gruppe mit invasiver Diagnostik, was häufiger zu einer Deeskalation bei der Therapie führte.

Aus differenzialdiagnostischen Erwägungen kann ein Zytozentrifugenpräparat der BAL-Flüssigkeit (BALF) nach Giemsa gefärbt werden, um eine Differenzialzytologie auf der Basis von 300 ausgezählten Zellen zu erhalten.

Darüber hinaus sollte eine Gramfärbung angefertigt werden, um ggf. eine vorherrschende Bakterienart zu identifizieren. Der prädiktive Wert hinsichtlich der später isolierten Spezies ist allerdings gering. Ein negatives Grampräparat aus TBAS oder BALF spricht bei nicht mit Antibiotika vorbehandelten Patienten gegen eine bakterielle VAP (102,103). In einer Meta-Analyse konnte gezeigt werden, dass der Nachweis grampositiver Haufenkokken in respiratorischen Materialien von Patienten mit VAP eine Sensitivität von 68 % (49-83 %) und eine Spezifität von 95 % (86-98 %) für einen kulturellen Nachweis von *S. aureus* zeigte (104). In Szenarien mit einer Prävalenz von 5-20% war zwar der positive Vorhersagewert mit 62 % eher niedrig, der negative Vorhersagewert mit 95 % allerdings hoch.

In einer randomisierten Multi-Center-Studie (105) mit 206 Intensivpatienten mit VAP in Japan wurde der klinische Erfolg einer Therapie, die sich an Ergebnissen einer Gram-Färbung orientierte mit einer Leitlinien-orientierten Therapie verglichen. Die klinische Erfolgsrate war bei beiden Gruppen nahezu identisch (76,7 % vs. 71,8 %), es ergaben sich keine statistisch signifikanten Unterschiede in der Sterblichkeit, der Anzahl beatmungsfreier Tage oder bei Nebenwirkungen. Allerdings kam es bei der Gram-Präparat-orientierten Gruppe zu einer Reduktion von Substanzen mit Wirkung gegen *P. aeruginosa* und MRSA (38,8 %).

Schließlich kann bei Verdacht auf VAP eine Untersuchung auf intrazelluläre Erreger in phagozytierenden Zellen („intracellular organisms“, ICO) erfolgen. Es wurden Grenzwerte von 2 – 15 % positiver Zellen mit...
unterschiedlichen Resultaten untersucht. Ein Anteil von > 5 % ICO spricht bei nicht antimikrobiell vorbehandelten Patienten für das Vorliegen einer VAP. Zur Diagnose der Erstepisode einer VAP zeigte der Grenzwert von 1,5 % ICO in einer chinesischen Studie eine gute Testcharakteristik (Fläche unter der ROC 0,956) (106). Die Sensitivität dieser Untersuchung unter antimikrobieller Vorbehandlung ist jedoch deutlich reduziert (< 50 %).

Kultur

Es handelt sich dabei um eine Schätzung, die sich an der Erregerlast im Sputum bei Patienten mit Pneumonie orientiert (107). So finden sich im Sputum etwa 10^5 bis 10^6 koloniebildende Einheiten (KBE)/ml. Als Schwellenwerte zur Unterscheidung zwischen Kolonisation und Infektion ergeben sich somit:

10^5 KBE/ml für das TBAS (identisch zum Sputum)
10^4 KBE/ml für die BALF

Die Erregerzahlen beziehen sich in den meisten Arbeiten auf unterscheidbare bakterielle Spezies.

Schließlich ist zu berücksichtigen, dass im Falle einer vorbestehenden antibiotischen Therapie die Sensitivität deutlich niedriger ist (108).

Die quantitative Kultur erlaubt eine bessere Abschätzung der Relevanz bakterieller Isolate.

<table>
<thead>
<tr>
<th>Wird der Einsatz von Multiplex-PCR im Rahmen der mikrobiologischen Diagnostik bei Patienten mit Verdacht auf nosokomiale Pneumonie empfohlen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Empfehlung</td>
</tr>
<tr>
<td>Evidenzbasiert</td>
</tr>
<tr>
<td>Empfehlung offen, Empfehlungsgrad 0</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ⊕⊕⊕⊕</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ⊕⊕⊕⊕</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ⊕⊕⊕⊕</td>
</tr>
<tr>
<td>(109–111) Starker Konsens</td>
</tr>
<tr>
<td>Sterblichkeit</td>
</tr>
<tr>
<td>Antibiotikatage</td>
</tr>
<tr>
<td>Zeit bis zur Deeskalation</td>
</tr>
</tbody>
</table>

Inwieweit neue, molekulare Techniken, die einen gleichzeitigen Erregernachweis und die Detektion einiger Resistenzgene erlauben, die in sie gesetzten Erwartungen erfüllen können, bleibt abzuwarten.

Derzeit sind zwei gut untersuchte Multiplex-PCR-Systeme zum Nachweis von bakteriellen Pneumonieerregern (inklusive Legionellen, Mykoplasmen, Chlamydien, *Pneumocystis jirovecii*) und einigen Resistenzgenen kommerziell erhältlich (BioFire FilmArray Pneumonia (bioMérieux), Unyvero Pneumonia Pannel (Curetis)). Das
Unyvero-Pannel umfasst 20 Bakterien und *Pneumocystis jirovecii* sowie 16 Resistenzgene, der FilmArray 18 Bakterien und 8 Resistenzgene sowie 9 Viren.

Einige retrospektive Studien mit nur wenigen (< 100) HAP-Patienten sind publiziert. In einer aktuellen Studie (112) wurden beide Systeme anhand von 6523 tiefen respiratorischen Materialien von 15 Krankenhäusern verglichen. Es konnten signifikant mehr Erregernachweise erbracht werden als durch die Kultur (Unyvero 60,4 %, FilmArray 74,2 % vs. Kultur 44,2 %). Für typische HAP/VAP-Pathogene betrug die Sensitivität und Spezifität vom FilmArray 91,7 % bis 100 % und 87,5 % bis 99,5 %, für Unyvero 50 % bis 100 % und 89,4 % bis 99 %. Der Nachweis von Resistenzgenen scheint mit einer Fehlerquote zwischen 20 und 30 % nicht sicher zu sein (113).

Bislang liegen nur wenige Studien vor, die die klinischen Konsequenzen der molekularbiologischen Diagnostik hinsichtlich z.B. Antibiotikaverbrauch, Beatmungs-/Liegedauer und Letalität prospektiv untersucht haben. In einer monozentrischen, prospektiven Studie wurde bei 605 unselektierten nicht-intubierten Patienten mit radiologisch diagnostizierter Pneumonie die Frage untersucht, ob die Ergebnisse des Curetis unyvero P50 assay aus BALF einen Einfluss auf die Länge des Krankenhausaufenthaltes und auf den Einsatz von Antibiotika haben. 54 % der Patienten waren immunsupprimiert, die meisten davon mit Zustand nach Lungentransplantation. Zwar war die Nachweishäufigkeit der molekularbiologischen Methode deutlich höher als die der kulturellen Analyse (82 % vs. 56 %, insbesondere *H. influenzae*, *A. baumannii*), dennoch hatten die molekularbiologischen Ergebnisse keinen Einfluss auf die Länge des Krankenhausaufenthaltes und die Gabe (Dauer und Anzahl) von Antibiotika. Immunkompetente Patienten hatten häufiger positive Resultate in der Molekularbiologie und Kultur als immunkompetente. Insgesamt zeigte die molekularbiologische Methode eine Sensitivität von 81,3 % und eine Spezifität von 86,9 % (Referenz: Kultur) (111).

Die Daten einer großen multizentrischen, randomisierten Studie, die den Einfluss der Ergebnisse des FilmArrays auf den klinischen Verlauf der Patienten zeigen soll, sind bislang nicht publiziert (114).

6.3.2 Mykologische Diagnostik

<table>
<thead>
<tr>
<th>Bei welchen Patienten sollte eine Diagnostik auf Aspergillus durchgeführt werden?</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Empfehlung</td>
</tr>
<tr>
<td>Evidenz-basiert</td>
</tr>
</tbody>
</table>

Tabelle 15. Unterschiede zwischen neutropenen Patienten und nicht-neutropenen ITS-Patienten mit IPA.

<table>
<thead>
<tr>
<th>Pathophysiologie</th>
<th>Neutropener Patient</th>
<th>Intensivpatient (ohne Neutropenie)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primär angio-invasiv</td>
<td>Primär Lungengewebe-invasiv, später angio-invasiv (Tage)</td>
</tr>
<tr>
<td>Klinische Symptomatik*</td>
<td>Fieber 95%, Husten 67%, thorakale Schmerzen 33%</td>
<td>Häufig nur schwer beurteilbar</td>
</tr>
<tr>
<td>Radiologisches Bild</td>
<td>„Halo“-Zeichen, „air-crescent“-Zeichen</td>
<td>Unspezifische Infiltrate, Konsolidierungen</td>
</tr>
<tr>
<td>Diagnosekriterien</td>
<td>Modifizierte EORTC/MSG Kriterien</td>
<td>Diverse modifizierte AspICU Kriterien</td>
</tr>
<tr>
<td></td>
<td>Serum: GM*</td>
<td>Serum: GM (CAVE schlechte Sensitivität)</td>
</tr>
</tbody>
</table>

*CAVE: bei invasiv-beatmeten Patienten nicht interpretierbar, Limitierung bei bestimmten diagnostischen Algorithmen, # ggf. Alternativen zu GM wie LFD oder LFA;

GM: Galactomannan Antigen-Test; LFA: Aspergillus Galactomannan lateral flow assay; LFD: lateral flow device.

Risikofaktoren für eine IPA bei ITS-Patienten beinhalten eine Steroidtherapie, COPD, Leberzirrhose, Malnutrition, Verbrennungen, Diabetes, sowie eine schwere Influenza- oder COVID-19 Infektion.

Die konventionelle Röntgenuntersuchung des Thorax ist zur Differentialdiagnostik der IPA ungeeignet. Die wesentlichen Gründe dafür sind die ungenügende Sensitivität bei der Detektion von frühen pneumonischen Infiltraten und der zunehmend geringer werdende Dosisvorteil gegenüber der aktuellen CT-Scanner-Generation (121).

Lediglich Verlaufskontrollen mit Röntgenthoraxuntersuchungen können Komplikationen von chronischen pulmonalen Aspergillus-Infektionen wie Pleuraerguss oder Pleuraverschwartung mit ausreichender Sicherheit diagnostizieren (122).

Radiologisch ist vielmehr die Computertomographie des Thorax (CT-Thorax) Mittel der Wahl. Klassische radiologische Muster sind bei nicht-neutropenen Patienten mit IPA in aller Regel nicht vorhanden (siehe Tabelle
Die bei diesen Patienten häufiger anzutreffende bronchoinvasive Form der IPA präsentiert sich in der CT unspezifisch im Sinne von Tracheal- und Bronchialwandverdickungen, peribronchialen Milchglasinfiltraten oder Konsolidierungen, Bronchietasen und fokalen Zeichen der Bronchiolitis (123,124).

Multiple Herdbefunde sind häufige CT-Befunde in frühen Phasen der IPA. Das Fehlen von Konsolidierungen oder unscharf begrenzten Raumforderungen („consolidation-or-mass“) sowie dieser Herdbefunde („macronodules“, Herde zwischen 3mm bis < 3cm Größe) kann die Diagnose einer IPA ausschließen (123). Die Morphologie der mit einer Aspergillus-Infektion einhergehenden Bildbefunde unterliegt einem dynamischen Wandel. Die Kombination aus fokalen Bronchietasen mit angrenzenden peribronchialen Milchglasinfiltraten und Herden mit Halozeichen kann die Diagnose einer frühen IPA unterstützen (125). Die initial nicht sehr spezifischen Befunde können eine CT-Verlaufskontrolle notwendig machen (126). Trotz eines klinischen Therapieansprechens kann sich das radiologische Bild in den ersten 7-10 Tagen auch noch verschlechtern.

Tabelle 16. Empfohlene EORTC/MSG Diagnosekriterien für die gesicherte und wahrscheinliche IPA bei Patienten auf Intensivstation

Gesicherte („proven“) IPA

Eines der beiden Kriterien muss erfüllt sein:

- Histopathologischer, zytologischer oder mikroskopischer Nachweis von Hyphen, welche mit Aspergillus spp. vereinbar sind, aus Nadelaspirat oder Gewebebiopsie und angrenzendem Lungengewebschaden; Aspergillus spp. muss in der Folge kulturell oder durch eine PCR bestätigt werden;

Wahrscheinliche („Probable“) IPA

Mykologische Evidenz für Aspergillus spp. + mind. 1 klinisches/radiologisches Kriterium + mind. 1 Wirtsfaktor

Mykologische Kriterien

Mindestens eines der folgenden Kriterien muss erfüllt sein:

- Nachweis von Aspergillus spp, in der Zytologie, Mikroskopie und/oder Kultur aus Material des unteren Respirationstraktes.
- Galactomannan Antigen Index >0,5 im Plasma oder Serum
- Galactomannan Antigen Index >1,0 in Bronchoalveolärer Lavage

Klinisch/radiologische Kriterien

Zumindest ein klinisch/radiologisches Kriterium passend zu einer pulmonalen Infektionserkrankung, welche nicht anders erklärt werden kann

- Dichte, gut begrenzte Läsion mit oder ohne Halo-Zeichen
- Air crescent-Zeichen
- Kaverne
- Keilförmige und segmentale oder lobär verteilte Konsolidierung
- Tracheobronchiale Ulzeration, Pseudomembrane, Nodulus, Plaque oder Schorf (eschar) in der Bronchoskopie (als Zeichen einer Aspergillus-Tracheobronchitis)

Wirtsfaktoren

Zusätzlich sollte mindestens einer der folgenden Wirtsfaktoren (host factors) erfüllt werden:

- Glukokortikoidtherapie entsprechend einer Prednisolon Dosis von 20 mg oder mehr pro Tag
- Chronische Lungenerkrankungen (z.B. COPD, Bronchiektasen)
- Dekompensierte Leberzirrhose
- Schwere Influenza-, COVID-19- oder andere schwere Virusinfektion
- Reduzierte Anzahl oder Funktionsfähigkeit der Neutrophilen (z.B. Absolute Anzahl an Neutrophilen ≤500 Zellen/mm3; vererbte Funktionsstörungen der Neutrophilen)*
- Immunsuppressive Therapie (z.B. mTOR oder TNF- alpha Inhibitoren, Alemtuzumab, Ibrutinib, Nucleosid-Analoga) während der letzten 90 Tage*
- Hämato-onkologische Grunderkrankung/HSCT*
- Solide Organ Transplantation*
- HIV-Infektion*

* Diese Wirtsfaktoren werden in der hiesigen Leitlinie nicht adressiert.

Modifizierte Diagnosekriterien für die IPA wurden auch für Patienten mit schwerer COVID-19- oder Influenza Infektion beschrieben (131,132).

Das Trachealsekret bei intubierten Patienten kann hilfreich sein z.B. als Screening bei Hochrisikopatienten oder wenn eine Bronchoskopie nicht möglich ist. Die Befunde müssen aber in Zusammenschau mit der Klinik und der Radiologie interpretiert werden. Nach Möglichkeit sollte der Befund durch eine Bronchoskopie verifiziert werden.

Der histopathologische Nachweis einer IPA sichert zwar die Diagnose einer IPA, spielt im klinischen Alltag aber eine untergeordnete Rolle. Eine Gewebebiopsie der Lunge ist häufig aufgrund des Komplikationsrisikos, der schlechten Sensitivität der transbronchialen Biopsie bei unspezifischen Infiltraten bei ITS-Patienten und der Verfügbarkeit guter alternativer Tests nicht gerechtfertigt.

6.3.3 Virologische Diagnostik

Wann und wie sollte eine virologische Diagnostik erfolgen?

<table>
<thead>
<tr>
<th>8. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>In Abhängigkeit von der epidemiologischen Situation soll derzeit mindestens auf SARS-CoV2 und Influenzavirus molekulargenetisch untersucht werden.</td>
</tr>
<tr>
<td>Starke Empfehlung</td>
</tr>
<tr>
<td>Eine Diagnostik auf andere respiratorische Viren sollte nicht routinemäßig im Rahmen der Erstevaluation durchgeführt werden.</td>
</tr>
<tr>
<td>Schwache Empfehlung</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

6.3.4 Materialgewinnung

Wann ist eine invasive Diagnostik, wann eine nicht invasive Materialgewinnung vorzuziehen?

<table>
<thead>
<tr>
<th>9. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidenz</td>
</tr>
</tbody>
</table>
| Eine bronchoskopische ist einer nicht-bronchoskopischen Diagnostik bei VAP nicht überlegen, so dass die Entscheidung für oder gegen eine bronchoskopische Diagnostik in
basiert Abhängigkeit von der lokalen Logistik, differenzialdiagnostischen Erwägungen, aber auch möglichen therapeutischen Aspekten einer endoskopischen Untersuchung getroffen werden soll.

Starke Empfehlung, Empfehlungsgrad A

<table>
<thead>
<tr>
<th>Hohe Evidenzqualität/ GRADE ⊕⊕⊕⊕</th>
<th>Sterblichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hohe Evidenzqualität/ GRADE ⊕⊕⊕⊕</td>
<td>Adäquate antiinfektive Therapie</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ⊕⊕⊕</td>
<td>Antibiotikatage</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ⊕⊕⊕</td>
<td>Beatmungstage</td>
</tr>
</tbody>
</table>

(142–147) *Starker Konsens*

Spontan atmende und nichtinvasiv (NIV) beatmete Patienten mit HAP

Patienten mit VAP

Weitere Untersuchungen gleicher Qualität, die diese Ergebnisse infrage stellen könnten, sind bis auf weiteres nicht zu erwarten.

purulenter Sekretionen sowie die Persistenz distaler Sekretionen während der Exspiration sind als unabhängige Prädiktoren für eine Pneumonie beschrieben worden (152). Schließlich ermöglicht die BALF eine zusätzliche Untersuchung auf die zuletzt im Rahmen der HAP bedeutsamer gewordenen Viren (zuletzt vor allem SARS-CoV2, aber auch Influenza) und Pilze (vor allem Aspergillus spp., hier auch durch Bestimmung des Galaktomannans). Auch wenn die Multiplex-PCR nicht allgemein etabliert ist, bietet nur die BALF die Möglichkeit einer entsprechenden Untersuchung.

Vor diesem Hintergrund bleibt zwar das nicht invasiv gewonnene und meist problemlos verfügbare Tracheobronchialsekret in der Initialdiagnostik ein hinreichendes Material für die mikrobiologische Erregerdiagnostik. Aufgrund der potenziellen Vorteile der BALF sollte jedoch eine Bronchoskopie mit BALF erwogen werden.

In folgenden Differentialindikationen wird eine invasive Diagnostik empfohlen:

1. Verdacht auf mit der Infektion assoziierte Atelektasen, bronchiale Blutungen oder Raumforderungen, die endoskopisch identifiziert und ggf. bereits bronchoskopisch bzw. interventionell therapiert werden können.
2. begründeter Verdacht auf eine Pneumonie durch Pilze, speziell Aspergillus spp., sowie ggf. auch virale Erreger
3. unzureichende Ausbeute bei der Gewinnung von Tracheobronchialsekret
4. Therapieversagen (siehe Empfehlung 24)

Folgende Kontraindikationen gegen eine invasive Diagnostik sind zu beachten:

1. Eine relative Kontraindikation gegen eine BAL besteht bei abszedierenden Pneumonien wegen der Gefahr der Erregerverschleppung während der Untersuchung.
2. Bei beatmeten Patienten besteht eine relative Kontraindikation gegen eine BAL in der schweren respiratorischen Insuffizienz (PaO2/FIO2 < 100). So konnte gezeigt werden, dass eine BAL unabhängig vom Lavagevolumen zu einer Reduktion der Oxygenierung auch über 24 Stunden hinaus führt, insbesondere dann, wenn tatsächlich eine Pneumonie vorliegt (153).

Kontraindikationen gegen bronchoskopisch gewonnenes Tracheobronchialsekret bestehen bei beatmeten Patienten nicht.

<table>
<thead>
<tr>
<th>Welche Standards werden bei der Materialgewinnung empfohlen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Empfehlung</td>
</tr>
<tr>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>Starke Empfehlung</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Die hier aufgeführten Empfehlungen sind den Ergebnissen einer Konsensuskonferenz entnommen, bei der die Erfahrungen internationaler Experten zusammengetragen wurden, die an der Entwicklung der BAL-Diagnostik bei VAP maßgeblich beteiligt waren (107). Für die meisten dargestellten Maßnahmen liegen keine Daten aus kontrollierten Studien vor.
Timing der Untersuchung

Vorbestehende antimikrobielle Therapie

Techniken der Materialgewinnung

Bei der nicht invasiven Gewinnung von tracheobronchiales Aspirat (TBAS) müssen bei der Abnahme sterile Katheter und dicht schließende Auffanggefäße verwendet und eine Kontamination mit Material aus dem Oropharynx muss so weit wie möglich vermieden werden. Die bronchoskopische Erregerdiagnostik umfasst heute in der Regel eine BAL. Die protected specimen brush (PSB) ist wenig verbreitet, kostenintensiv und im Prinzip entbehrlich.

Probenmenge

Laut MiQ sollen bei Sputum, Bronchialsekret und TBAS mehr als 1ml eingesandt werden, bei Mini-BAL 10-20 ml, bei BAL 30-100 ml. Die Probenmenge ist für die Durchführung mikrobiologischer Analysen i. A. nicht kritisch, die Probe sollte allerdings repräsentativ gewonnen sein.

Bronchoalveolare Lavage (BAL)

Verarbeitung nicht invasiv und invasiv gewonnener Proben

Die Probenverarbeitung sollte innerhalb von spätestens vier Stunden nach Entnahme erfolgen. Lässt sich ein längerer Zeitraum bis zur Verarbeitung nicht vermeiden, muss das Material gekühlt (4 – 8 °C) gelagert und transportiert werden. Unter diesen Bedingungen verschlechtert sich insgesamt die Aussagekraft der Untersuchungen auch bei 24-stündiger Lagerung nicht wesentlich (155,156). Andernfalls drohen empfindliche Erreger abzusterben (z. B. Pneumokokken, H. influenzae) und es besteht die Gefahr der Überwucherung durch schnell wachsende Mikroorganismen, die durch ihre Vermehrung eine falsch hohe Menge einer nicht am Geschehen beteiligten Spezies vortäuschen können.

Tabelle 17. Methodische Voraussetzungen zur Gewinnung qualitativ hochwertiger diagnostischer Proben aus dem unteren Respirationstrakt

<table>
<thead>
<tr>
<th>Probe</th>
<th>Voraussetzungen</th>
</tr>
</thead>
</table>

41
Tracheobronchialaspirat

Absaugung des Sekrets aus dem Tubus
Tiefes Einführen eines frischen sterilen Katheters mit angeschlossenem Auffanggefäss, dann erst Absaugung aktivieren
Keine vorherige Instillation von Kochsalz-Lösung

Bronchoskopie

Gute Sedierung
Bei intubierten Patienten sollte auf die Anwendung von Lokalanästhetika verzichtet werden
Keine Aspiration über den Arbeitskanal des Bronchoskops vor Gewinnung der respiratorischen Sekrete

6.4 Bildgebung

Welche bildgebenden Verfahren sind in der Diagnostik der HAP indiziert?

<table>
<thead>
<tr>
<th>11. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experten-konsens</td>
</tr>
<tr>
<td>Erstdiagnose: Bei Verdacht auf eine HAP soll eine Röntgenuntersuchung des Thorax im Stehen in zwei Ebenen in Hartstrahltechnik in Inspiration durchgeführt werden. Bei immobilen Patienten wird eine Röntgenuntersuchung in einer Ebene möglichst im Sitzen, alternativ im Liegen durchgeführt.</td>
</tr>
<tr>
<td>Starke Empfehlung</td>
</tr>
<tr>
<td>Falls die Röntgengrenzaufnahme kein eindeutiges Korrelat für eine Pneumonie ergibt und eine Änderung der Behandlungsstrategie zu erwarten ist, sollten weitere bildgebende Verfahren (Thorax-Sonographie, -CT) durchgeführt werden.</td>
</tr>
<tr>
<td>Schwache Empfehlung</td>
</tr>
</tbody>
</table>

Zur Verbesserung der diagnostischen Genauigkeit der Röntgengrenzaufnahme im Liegen sollten Qualitätsparameter eingeführt und deren Einhaltung kontrolliert werden (Tabelle 18).

Tabelle 18. Qualitätsparameter bei Röntgengrenzaufnahmen im Liegen (basierend auf (158))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anforderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagerung</td>
<td>Eine symmetrische, möglichst streng horizontale Positionierung des Patienten in Rückenlage auf der Detektoreinheit (Filmkassette, Speicherfolie o.ä.) ist</td>
</tr>
</tbody>
</table>
notwendig. Insbesondere bei adipösen Patienten ist ein Streustrahlenraster zu bevorzugen.

Vorbereitung
Alle extrakorporalen Installationen im Bereich des Thorax (Katheter, Kabel, Beatmungsschläuche etc.) müssen entfernt bzw. verlagert und fixiert werden, soweit für den Untersuchungszeitraum klinisch zu vertreten.

Aufnahme
Die Exposition (d.h. Belichtung) der Detektoreinheit muss zum Zeitpunkt der maximalen Inspiration erfolgen.

Dokumentation
Dokumentation der Belichtungsparameter:
- KV (90 - 110 kV) und mAs
- Belichtungszeit (möglichst kurze Expositionszeit)
- Fokus-Detektor - Abstand (in cm, empfohlen sind 90 – 120 cm) sowie Beatmungsparameter:
 - inspiratorischer Beatmungsdruck (ggf. PEEP), paO2, FIO2
 - Ggf. anliegender Sog oder Abklemmung an Drainagen

Die Befundung in Form eines strukturierten Reports (159) führt zu einer erhöhten Befundqualität und verbesserten klinischen Akzeptanz (160). Die Etablierung einer strukturierten Befundung sollte daher angestrebt werden.

Den höchsten Stellenwert für die Diagnose einer Pneumonie im Röntgenbild haben multiple Bronchopneumogramme mit einer Prädictionsrate von ca. 64 % (66). Röntgenthoraxuntersuchungen bei postoperativen Patienten mittels Aufnahmetechnik im Liegen zeigen eine Sensitivität von 50-70 % und Spezifität von 80-100 % für die Detektion von Konsolidierungen (Infiltrate und Atelektasen), bezogen auf die CT als Referenzstandard. In den Unterkörper, insbesondere retrokardial, werden Befunde am häufigsten übersehen (161). Daher sollte die Thoraxuntersuchung wenn immer möglich in der Radiologie erfolgen, z. B. als Thoraxübersicht in aufrechter Position anlässlich der Verlegung von der Intensiv- oder Überwachungsstation auf die Normalstation oder als CT, wenn aus anderen Gründen eine andere CT-Untersuchung angefordert wird.

Falls die Röntgenthoraxaufnahme kein Infiltrat zeigt, klinisch jedoch der Verdacht auf eine Pneumonie besteht, sollte der Einsatz der CT geprüft werden, da einige Lungenabschnitte in der Thoraxübersichtsaufnahme nicht ausreichend überlagerungsfrei dargestellt und interstitielle Infiltrate schwer erkennbar sein können (164–166). Eine Niedrigdosis-CT ohne intravenöses Kontrastmittel ist dabei zur Identifikation eines Infiltrats ausreichend.

Valide Daten zum Einsatz der Computertomographie für die Diagnose einer HAP liegen nicht vor. Eine CT-Untersuchung des Thorax ist insbesondere bei therapierefraktären Infiltraten aus differentialediagnostischen Erwägungen zu begründen. Damit können Infiltrat-Ausschluss und relevante Differentialdiagnosen mit Pneumonie-ähnlichen Mustern der konventionellen Röntgenuntersuchung besser differenziert werden, wie etwa alveoläre Einblutung, Infarktpneumonie nach Lungenembolie, kardiales Ödem, Atelektase oder die organisierende Pneumonie (167). Bei einem V.a. eine Lungenarterienembolie sollte eine Angio-CT-Technik...
mit intravenösem Kontrastmittel genutzt werden. Mit der i.v.-kontrastverstärkten CT ist auch die Differenzierung von organisiertem Infiltrat und Atelektase möglich. Voraussetzung für eine effektive CT-Diagnostik ist dabei die entsprechende Kommunikation der Fragestellung mit dem Radiologen, da die jeweilige Kontrastmittelphase im CT (pulmonalarteriell, aortal, venös) auf die jeweilige Fragestellung abgestimmt werden muss.

Aufgrund der guten Verfügbarkeit in der Intensivmedizin kann der Ultraschall als zusätzliche Methode zur Diagnose der VAP verwendet werden (168). Der Nachweis von 2 Bronchopneumogrammen hatte in einer aktuellen Studie an 99 Patienten einen positiv prädiktiven Wert für VAP von 94 %, in Kombination mit einer Gramfärbung aus dem Aspirat lag die Sensitivität bei 77 % mit einer Spezifität von 78 % (169). Bezogen auf die CT als Referenzstandard konnten Bourcier et al. in ihrer Studie an 144 Patienten eine Überlegenheit der Lungensonographie gegenüber dem Thoraxröntgen für die Diagnose einer Pneumonie zeigen (170).

Mit einer Pneumonie sind folgende Zeichen in der ausführlichen Ultraschalluntersuchung assoziiert:

- eine oder mehrere pulmonale Konsolidierungen,
- juxtapleural Konsolidierungen mit oder ohne B-Linien,
- der Nachweis eines intrapulmonalen farbkodierten Doppler-Signals innerhalb der Konsolidierung und
- der Nachweis eines statischen oder dynamischen Bronchopneumogramms innerhalb der Konsolidierungen (171,172).

Zu berücksichtigen sind der zeitliche und damit personelle Aufwand sowie die Begrenzung der Eindringtiefe auf den Subpleuralraum. Die eingeschränkte Reproduzierbarkeit und insbesondere die ausgeprägte Abhängigkeit von der Erfahrung des Untersuchers sind limitierende Faktoren.

7 Therapie
7.1 Antimikrobielle Therapie

7.1.1 Antibakterielle Substanzen
Die Leitliniengruppe hat sich aus Gründen der Übersichtlichkeit entschieden, die Antibiotika zur Therapie der nosokomialen Therapie in einer Tabelle zusammen zu fassen, auf die an dieser Stelle verwiesen werden soll (Tabelle 19).

Tabelle 19. Antibiotika zur Therapie der nosokomialen Pneumonie

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Dosierung</th>
<th>Erfasste Pneumonie-Erreger</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicilline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillin G</td>
<td>4 x 5 Mio. IU oder 3 x 10 Mio. IU i.v.</td>
<td>Pneumokokken</td>
<td>Zur gezielten Therapie bei Nachweis sensibler Pneumokokken</td>
</tr>
<tr>
<td>Flucloxacillin</td>
<td>4 x 3 g i.v. 6 x 2 g i.v.</td>
<td>S. aureus (MS)</td>
<td>Zur gezielten Therapie bei Infektionen durch MSSA</td>
</tr>
<tr>
<td>Medikament</td>
<td>Dosierung</td>
<td>Erreger</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>3 – 4 x 2 g i.v.
 3 x 5 g i.v.</td>
<td>Pneumokokken
 H. influenzae</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin/Clavulansäure</td>
<td>3 x 2,2 g i.v.
 (2 g Amoxicillin + 0,2 g Clavulansäure)</td>
<td>Pneumokokken
 S. aureus (MS)
 H. influenzae
 einige Enterobacterales</td>
<td></td>
</tr>
<tr>
<td>Ampicillin/Sulbactam</td>
<td>3 x 3 g i.v.
 (2g Ampicillin + 1g Sulbactam)
 >80kg KG
 4 x 3 g i.v.
 (2 g Ampicillin + 1 g Sulbactam)</td>
<td>Pneumokokken
 S. aureus (MS)
 H. influenzae
 einige Enterobacterales</td>
<td></td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>Standarddosis: 4 x 4,5 g (4 g Piperacillin + 0,5 g Tazobactam) i.v. über 30 min
 oder
 3 x 4,5 g (4 g Piperacillin + 0,5 g Tazobactam) i.v. über 4h
 oder
 Hohe Dosierung: 4 x 4,5 g (4 g Piperacillin + 0,5 g Tazobactam) i.v. über 3 h</td>
<td>Pneumokokken
 S. aureus (MS)
 H. influenzae
 Viele Enterobacterales
 P. aeruginosa
 Nosokomiale Pneumonie mit Pseudomonas-Risiko
 Hohe Dosierung bei Infektion mit P. aeruginosa
 Prolongierte Infusion über 3 h generell bei kritisch kranken Patienten empfohlen (bei Therapiestart loading dose 1x4,5g als Kurzinfusion)</td>
<td></td>
</tr>
<tr>
<td>Cephalosporine</td>
<td>Cefazolin
 3 (- 4) x 2 g i.v.</td>
<td>Pneumokokken
 S. aureus (MS)
 Zur gezielter Therapie bei Infektionen durch MSSA</td>
<td></td>
</tr>
<tr>
<td>Cefotaxim</td>
<td>3-4 x 2g i.v.
 Höchstdosis: 12g/d</td>
<td>Pneumokokken
 H. influenzae
 viele Enterobacterales</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxon</td>
<td>1 x 2 g i.v.</td>
<td>Pneumokokken
 H. influenzae
 viele Enterobacterales</td>
<td></td>
</tr>
<tr>
<td>Ceftazidim</td>
<td>3 x -1-2 g i.v.</td>
<td>H. influenzae
 viele Enterobacterales
 Gezielte Therapie bei Nachweis von P. aeruginosa: hohe Dosierung (3 x 2g)!</td>
<td></td>
</tr>
<tr>
<td>Antibiotikum</td>
<td>Dosierung</td>
<td>Empfehlungen</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa ggf. Acinetobacter baumannii</td>
<td>Cave: keine hinreichende Aktivität gegenüber Pneumokokken und S. aureus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepim</td>
<td>2 – 3 x 2 g i.v.</td>
<td>Pneumokokken S. aureus (MS) H. influenzae Viele Enterobacterales P. aeruginosa Nosokomiale Pneumonie mit Pseudomonas-Risko oder gezielte Therapie bei Nachweis sensibler Erreger</td>
<td></td>
</tr>
<tr>
<td>Carbapeneme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem/Cilastatin</td>
<td>3-4 x 1 g i.v.</td>
<td>Pneumokokken S. aureus (MS) H. influenzae Viele Enterobacterales P. aeruginosa A. baumannii Pneumogene Sepsis, Nosokomiale Pneumonie mit Risiko für resistente gramnegative Erreger, einschließlich P. aeruginosa</td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>Standarddosis: 3 x 1 g über 30min Hohe Dosis: 3 x 2g i.v. über 3h</td>
<td>Pneumokokken S. aureus (MS) H. influenzae Viele Enterobacterales P. aeruginosa A. baumannii Pneumogene Sepsis, Nosokomiale Pneumonie mit Risiko für resistente gramnegative Erreger, einschließlich P. aeruginosa Prolongierte Infusion über 3 h bei kritisch kranken Patienten empfohlen (bei Therapiestart 0,5-1g loading dose als Kurzinfusion)</td>
<td></td>
</tr>
<tr>
<td>Aminoglykoside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>1 x 6 mg/kg i.v.</td>
<td>Viele Enterobacterales P. aeruginosa A. baumannii Nur zur Kombinationstherapie Talspiegelkontrolle <1mg/L, wenn länger als 3 Tage im Einsatz</td>
<td></td>
</tr>
<tr>
<td>Glykopeptide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>Initialdosis: 2 x 0,4 g i.v. (entsprechend mindestens 6 mg/kg Körpergewicht) alle 12 Stunden für 3 Anwendungen</td>
<td>Pneumokokken S. aureus (MS und MR) Pneumonie durch MRSA Talspiegelkontrolle: Zielwert: >20 mg /l</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Initialdosis</td>
<td>Erhaltungsdosis (1h): Dosierung nach Spiegelbestimmung (TDM), Zielspiegel: intermittierende Dosierung</td>
<td>Pneumokokken S. aureus (MR)</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15-20 mg/kg (bei sehr schweren Infektionen 25-30 mg/kg, maximal 3000mg)</td>
<td>6 mg/kg Körpergewicht intravenös einmal täglich</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug</th>
<th>Standarddosis</th>
<th>Viele Enterobacterales P. aeruginosa</th>
<th>Kalkulierte Kombinationstherapie bei nosokomialer Pneumonie mit Risiko für P. aeruginosa oder gezielte Therapie bei Nachweis von P. aeruginosa: hohe Dosierung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>2 x 0,5 g p.o. 2 x 0,4 g i.v. Hohe Dosis: 2 x 0,75 g p.o. 3 x 0,4 g i.v.</td>
<td></td>
<td>nosokomiale Pneumonie ohne Risikofaktoren für MRE</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>1 x 0,5 g i.v., p.o. Hohe Dosis: 2 x 0,5 g i.v., p.o.</td>
<td>Pneumokokken S. aureus (MS) Viele Enterobacterales P. aeruginosa</td>
<td>nosokomiale Pneumonie ohne Risikofaktoren für MRE</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>1 x 0,4 g i.v., p.o.</td>
<td>Pneumokokken S. aureus Viele Enterobacterales</td>
<td>nosokomiale Pneumonie ohne Risikofaktoren für MRE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug</th>
<th>Standarddosis</th>
<th>S. aureus H. influenzae Viele Enterobacterales S. maltophilia</th>
<th>Infektionen durch Stenotrophomonas maltophilia: Höchste Dosierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotrimoxazol</td>
<td>2 x 960 mg (160 mg Trimethoprim + 800 mg Sulfamethoxazol) p.o. oder i.v. Hohe Dosis: 2 x 1440 mg (240 mg Trimethoprim + 1200 mg Sulfamethoxazol) p.o. oder i.v.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höchste Dosierung: 8-12 mg/kgKG/d in 3 Einzeldosen (bezogen auf Trimethoprim-Anteil)</td>
<td>S. aureus (MS und MR) Viele Enterobacterales P. aeruginosa</td>
<td>Kombinationstherapie bei z.B. abszedierender S. aureus-Pneumonie, Kombinationstherapie bei multiresistenten gramnegativen Erregern</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Fosfomycin 3 x 4-5 g i.v. (bei schweren Infektionen bis 24 g)</td>
<td></td>
<td>Pneumokokken S. aureus (MS und MR) Pneumonie durch MRSA Ggf. gezielte Therapie bei MSSA oder Pneumokokken bei Betalaktam-Allergie</td>
<td></td>
</tr>
<tr>
<td>Linezolid 2 x 0,6 g i.v., p.o.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserveantibiotika neu*</td>
<td>Viele Carbapenem-resistente Enterobacterales (KPC, OXA-48, MBL) P. aeruginosa A. baumannii</td>
<td>Zur gezielten Therapie bei Infektionen durch sensible gramnegative Erreger, bei denen andere AB nicht wirken</td>
<td></td>
</tr>
<tr>
<td>Cefiderocol 3 x 2 g i.v. über 3 h</td>
<td>Viele Carbapenem-resistente Enterobacterales (KPC, OXA-48) P. aeruginosa A. baumannii</td>
<td>Zur gezielten Therapie bei Infektionen durch sensible gramnegative Erreger, bei denen andere Antibiotika nicht wirken Kombination mit Aztreonam zur gezielten Therapie bei Enterobacterales mit Metallo-Carbapenemasen</td>
<td></td>
</tr>
<tr>
<td>Ceftazidim/Avibactam 3 x 2,5 g (2g Ceftazidim + 0,5 g Avibactam) i.v. (Applikation über 2 h)</td>
<td>Viele Carbapenem-resistente Enterobacterales (KPC, OXA-48) P. aeruginosa (DTR)</td>
<td>Zur gezielten Therapie bei Infektionen durch sensible gramnegative Erreger, bei denen andere Antibiotika nicht wirken</td>
<td></td>
</tr>
<tr>
<td>Ceftolozan/Tazobactam 3 x 3 g (2g Ceftolozan + 1g Tazobactam) i.v. (Applikation über 1 h)</td>
<td>P. aeruginosa (DTR)</td>
<td>Zur gezielten Therapie bei Infektionen durch sensible P. aeruginosa, bei denen andere AB nicht wirken</td>
<td></td>
</tr>
<tr>
<td>Imipenem/Cilastatin/Relebactam 4 x 1,25 g (Imipenem 0,5 g + Cilastatin 0,5 g + Relebactam 0,25 g) i.v. über 30 min</td>
<td>Carbapenem-resistente Enterobacterales (KPC) P. aeruginosa (DTR)</td>
<td>Zur gezielten Therapie bei Infektionen durch sensible gramnegative Erreger, bei denen andere AB nicht wirken</td>
<td></td>
</tr>
<tr>
<td>Meropenem/Vaborbactam 3 x 4 g (Meropenem 2 g + Vaborbactam 2 g) i.v., Applikation über 3 h</td>
<td>Carbapenem-resistente Enterobacterales (KPC)</td>
<td>Zur gezielten Therapie bei Infektionen durch sensible gramnegative Erreger, bei...</td>
<td></td>
</tr>
</tbody>
</table>
Reserveantibiotika alt

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Dosierung</th>
<th>Indikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aztreonam</td>
<td>3 x 1 g – 4 x 2 g i.v.</td>
<td>Viele Enterobacterales, P. aeruginosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kombination mit Ceftazidim/Avibactam zur gezielten Therapie bei Enterobacterales mit Metallo-Carbapenemasen. Ggf. zur gezielten Therapie bei Pneumonien durch sensible gramnegative Erreger, bei denen andere AB nicht wirken.</td>
</tr>
<tr>
<td>Ceftobiprol</td>
<td>3 x 0,5 g i.v. (Applikation über 2 h)</td>
<td>Pneumokokken, S. aureus (MS und MR), H. influenzae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zur gezielten Therapie bei Nachweis sensibler Erreger HAP (NICHT VAP).</td>
</tr>
<tr>
<td>Colistin</td>
<td>Initialdosis 9 Mio. IE</td>
<td>Viele Enterobacterales, P. aeruginosa</td>
</tr>
<tr>
<td></td>
<td>Erhaltungsdosis 2 x 4,5 Mio. IE/d i.v.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Höchstdosis 3x 4 Mio. IE/d i.v. nur in Ausnahmefällen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zur gezielten Kombinationsbehandlung bei Pneumonien durch gramnegative Erreger, bei denen die neuen Reserveantibiotika nicht wirken.</td>
</tr>
</tbody>
</table>

Als Reserveantibiotika neu werden Substanzen bezeichnet, die durch den GBA entsprechend eingestuft wurden.

Alle aufgeführten Substanzen haben potentielle unerwünschte Wirkungen, z.T. schwere. Hier wird auf die Fachinformationen verwiesen.

Wann soll die antimikrobielle Therapie begonnen werden?

<table>
<thead>
<tr>
<th>12. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experten-konsens</td>
</tr>
</tbody>
</table>
Die Antibiotikatherapie nach Entnahme von adäquatem Untersuchungsmaterial so früh wie möglich erfolgen
bei Patienten mit septischem Schock eine Antibiotikatherapie innerhalb der ersten Stunde gegeben werden.

Starke Empfehlung

Mehrheitliche Zustimmung

Die Empfehlung, bereits bei Verdacht auf eine nosokomiale Pneumonie eine kalkulierte antibiotische Therapie zu beginnen, gilt uneingeschränkt für Patienten im septischen Schock.

Die Datenlage ist weniger eindeutig für Patienten ohne septischen Schock. Dessen ungeachtet zwingen die Schwierigkeiten der Diagnostik zu einer Entscheidung über die Wahrscheinlichkeit des Vorliegens einer Pneumonie, die im positiven Fall eine umgehende kalkulierte antibiotische Therapie nach sich zieht. Entscheidend für die Limitierung nicht indizierter Antibiotikagaben bleibt die sorgfältige Überprüfung der Verdachtsdiagnose einer Pneumonie.

Die Empfehlungen zur kalkulierten antimikrobiellen Therapie folgen dem Vorliegen eines Risikos für MRE und *P. aeruginosa*. Die relevante Multiresistenz im grampositiven Bereich ist MRSA.

Welche Optionen der kalkulierten Therapie sind bei Patienten mit nosokomialer Pneumonie zu empfehlen?

<table>
<thead>
<tr>
<th>13. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experten-konsens</td>
</tr>
</tbody>
</table>
Die Substanzauswahl **soll** vor dem Hintergrund des lokalen Erregerspektrums und Resistenzprofils getroffen werden. **Starke Empfehlung** |

| **Starker Konsens** |

Die Datenbasis zu Erregerspektrum und Therapie der nosokomialen Pneumonie bei Patienten ohne invasive Beatmung und anderen Risikofaktoren für MRE ist außerordentlich schmal. Die Patientenkollektive sind heterogen und die Erregernachweisrate liegt deutlich niedriger als bei der VAP. Es wurden Piperacillin/Tazobactam, Cephalosporine der Gruppen 3a und 3b, Carbapeneme und Moxifloxacin geprüft, ohne dass eine Überlegenheit einer Substanz hinsichtlich Sterblichkeit oder klinischem Therapieerfolg gefunden wurde (175–177).

Bei niedrigem Risiko für MRE (Tabelle 14) erscheint eine Therapie mit begrenztem Wirkpektrum möglich (Tabelle 20). Bei der Substanzauswahl sollten lokales Erregerspektrum und Resistenzdaten berücksichtigt werden.

Die Kombination mit Makroliden in antinflammatorischer Indikation ist bei HAP oder VAP nicht untersucht. Eine regelhafte Berücksichtigung der Legionellen im antibiotischen Spektrum ist nicht indiziert (179).

Der Begriff gramnegative MRE hat keine einheitliche Definition, er steht für "gramnegative multiresistente Erreger" und bezieht sich auf Bakterienstämm mit Resistzen gegen mehrere Antibiotikaklassen.

Unter anderem bilden folgende Bakterienarten besondere Resistenzmechanismen aus: *Escherichia coli* (E. coli), *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* und *Acinetobacter baumanii*.

Bei Verdacht auf MRSA-Infektion sollten bei Vorliegen einer Sepsis oder eines septischen Schocks Vancomycin oder Linezolid als gegenüber MRSA wirksame Substanzen hinzugefügt werden (siehe Kapitel 7.7). Bei bekannter ESBL und/oder MRGN-Besiedlung soll ein Therapieschema gewählt werden, welches die entsprechenden ESBL und/oder MRGN miterfasst. VRE gilt nicht als Erreger einer Pneumonie, eine Antibiotikatherapie, die diesen Erreger einschließt, ist nicht erforderlich.

Die hier gegebenen Empfehlungen (Tabelle 20 und Abbildung 1) berücksichtigen die aktuellen epidemiologischen und mikrobiologischen Daten in Deutschland (siehe Kapitel 5). Die detaillierten Angaben zu den Dosierungen können auch der Tabelle 19 entnommen werden. Weitere Empfehlungen zur Kombinationstherapie werden in Kapitel 7.2 besprochen.

Tabelle 20. Kalkulierte Therapie bei nosokomialer Pneumonie
Patienten OHNE septischem Schock

<table>
<thead>
<tr>
<th>OHNE erhöhtem Risiko für MRE (Tabelle 14)</th>
<th>MIT erhöhtem Risiko für MRE (Tabelle 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminopenicillin/BLI</td>
<td>Pseudomonas-wirksames Betalaktam</td>
</tr>
<tr>
<td>Ampicillin/Sulbactam 3-4 x 3 g i.v.</td>
<td>Piperacillin/Tazobactam 4 x 4,5 g i.v.</td>
</tr>
<tr>
<td>Amoxicillin/Clavulansäure 3 x 2,2 g i.v.</td>
<td>ODER</td>
</tr>
<tr>
<td>ODER</td>
<td>Cefepim 2 – 3 x 2 g i.v.</td>
</tr>
<tr>
<td>Cephalosporin Gr. 3a</td>
<td>ODER</td>
</tr>
<tr>
<td>Ceftriaxon 1 x 2 g i.v.</td>
<td>Meropenem 3 x 1-2 g i.v.</td>
</tr>
<tr>
<td>Cefotaxim 3-4 x 2 g i.v.</td>
<td>ODER</td>
</tr>
<tr>
<td>Fluorchinolon</td>
<td>ODER</td>
</tr>
<tr>
<td>Moxifloxacin 1 x 0,4 g i.v. oder p.o.</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin 2 x 0,5 g i.v. oder p.o.</td>
<td></td>
</tr>
</tbody>
</table>

Patienten MIT Septischem Schock

<table>
<thead>
<tr>
<th>OHNE weiterem Risikofaktor für MRE (Tabelle 14)</th>
<th>MIT weiterem Risikofaktor für MRE (Tabelle 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapie</td>
<td>Kombinationstherapie</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Pseudomonas-wirksames Betalaktam</td>
</tr>
<tr>
<td>Meropenem 3 x 1-2 g i.v.</td>
<td>PLUS</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas-wirksames Fluorchinolon</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin 3 x 0,4 g i.v.</td>
</tr>
<tr>
<td></td>
<td>Levofloxacin 2 x 0,5 g i.v.</td>
</tr>
<tr>
<td></td>
<td>ODER</td>
</tr>
<tr>
<td></td>
<td>Aminoglykosid</td>
</tr>
<tr>
<td></td>
<td>Tobramycin 1 x 6 mg/kg i.v.</td>
</tr>
<tr>
<td></td>
<td>ODER</td>
</tr>
<tr>
<td></td>
<td>Fosfomycin 3 x 4-5 g i.v.</td>
</tr>
</tbody>
</table>

Bei MRSA-Verdacht PLUS

Glykopeptid

<table>
<thead>
<tr>
<th>Vancomycin</th>
<th>Initialdosis 15-20 mg/kg (bei sehr schweren Infektionen 25-30 mg/kg, maximal 3000mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erhaltungsdosis (1h): Dosierung nach Spiegelbestimmung (TDM), Zielspiegel: intermittierende Dosierung 15-20 mg/l, kontinuierliche Gabe 20-25 mg/l</td>
</tr>
<tr>
<td></td>
<td>ODER</td>
</tr>
<tr>
<td>Oxazolidinon</td>
<td>ODER</td>
</tr>
<tr>
<td>Linezolid 2 x 0,6 g i.v. oder p.o.</td>
<td></td>
</tr>
</tbody>
</table>
7.1.1.1 Prolongierte Infusionsdauer und Therapeutisches Drug Monitoring von Betalaktam Antibiotika

<table>
<thead>
<tr>
<th>Profiteren bestimmte Patientengruppen von einer prolongierten Infusion einer Betalaktam-Therapie?</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Empfehlung</td>
</tr>
<tr>
<td>Evidenz-basiert: Bei kritisch kranken Patienten sollte nach initialer loading dose eine prolongierte Applikation von hierfür geeigneten Betalaktam-Antibiotika bevorzugt eingesetzt werden.</td>
</tr>
<tr>
<td>Schwache Empfehlung, Empfehlungsgrad B</td>
</tr>
<tr>
<td>Niedrige Evidenzqualität/ GRADE ⊗ ⊗ ⊗</td>
</tr>
<tr>
<td>Niedrige Evidenzqualität/ GRADE ⊗ ⊗ ⊗</td>
</tr>
<tr>
<td>(182–186) Starker Konsens</td>
</tr>
<tr>
<td>Sterblichkeit</td>
</tr>
<tr>
<td>Klinische Heilung</td>
</tr>
</tbody>
</table>

Bei konzentrationsabhängig wirksamen Antibiotika ist ein hohes Verhältnis aus Spitzenkonzentration (Cmax) zu minimaler Hemmkonzentration (MHK) ausschlaggebend für die Wirkung. Bei zeitabhängig wirksamen
Antibiotika ist die Zeit entscheidend, in der die freie Konzentration des Antibiotikums oberhalb der minimalen Hemmkkonzentration (MHK) eines Erregers liegt (fT > MHK). Für Penicilline, Cephalosporine und Carbapeneme wurden fT > MHK-Werte von mindestens 50 %, 60-70 % bzw. mindestens 40% des Dosisintervalls ermittelt.

Eine Möglichkeit, die Wirksamkeit von Betalaktam-Antibiotika zu verbessern, ist somit die Verlängerung der Infusionsdauer auf 3-4 Stunden oder die kontinuierliche Infusion über 24 Stunden.

Zur raschen Erzielung eines therapeutischen Wirkspiegels bei Therapiebeginn soll zunächst eine initiale Bolusgabe (i.d.R. 50 % der Einzeldosis ausreichend) bei kritisch kranken Patienten verabreicht werden. Unmittelbar im Anschluss an diese Kurzinfusion kann eine prolongierte oder kontinuierliche Infusion über 3-4 bzw. 24 Stunden mittels Spritzenpumpe fortgeführt werden.

Eine kontinuierliche Applikation (über 24 Stunden) ohne regelmäßige und zeitnahe (d.h. Ergebnismitteilung ≤ 24 h) Kontrolle der Blutspiegel (TDM) darf nicht durchgeführt werden, da hier die Gefahr der dauerhaften Unterschreitung der PK/PD-Ziele besteht (z.B. bei hoher MHK des Erregers oder bei gesteigerter Antibiotika Clearance) (190).

Bei Patienten mit prolongierter Infusion, die ein hohes Risiko für subtherapeutische Konzentrationen haben (z.B. GFR>130 ml/min oder Erreger mit hoher MHK) ist ein TDM geeignet, um zu überprüfen, ob die Konzentration im Zielbereich liegt.

Für die Durchführung und Interpretation der TDM-Ergebnisse ist ein fundiertes Wissen zu Pharmakokinetik und -dynamik der Substanz unumgänglich und eine interdisziplinäre (Intensivmediziner, Infektiologen,
Labormediziner, Mikrobiologen) erforderlich und interprofessionelle Zusammenarbeit (klinische Pharmazeuten) im Rahmen eines TDM-Programms empfohlen.

Insbesondere bei Patienten mit supranormaler Nierenfunktion („augmented renal clearance“ = GFR ≥ 130 ml/min/m²), bei hyperdynamer Kreislaufsituation mit hohem Herzzeitvolumen (HZV) oder hoher Volumensubstitution erscheint eine höhere Dosierung von v.a. hydrophilen Antibiotika (z.B. Betalaktam-Antibiotika) sinnvoll.

Allgemeine Grundsätze zur Dosierung

Es wird zwischen einer Standarddosierung und einer hohen Dosierung unterschieden (siehe Tabelle 19). Die hohe Dosis ist bei bestimmten Indikationen oder bei bestimmten Erregern indiziert und soll bei Antibiotika eingesetzt werden, die als „I“ (sensibel bei erhöhter Exposition) auf dem Antibiogramm berichtet worden sind, sofern nicht eine Anreicherung des Antibiotikums am Infektionsort erfolgt (z.B. Betalaktam-Antibiotika bei Infektionen des Harntrakts). Hintergrund für die grundlegende Überarbeitung der Dosisempfehlungen durch die EUCAST in den vergangenen Jahren war die Beobachtung, dass mit den bis dato empfohlenen Standarddosierungen bei ausgewählten Substanzen eine adäquate Antibiotikaexposition nicht in jeder Situation gewährleistet war. So konnte zum Beispiel für Piperacillin/Tazobactam in Studien gezeigt werden, dass mit der bisherigen Standard-Dosierung (4,5 g alle 8 h über 30 min) nicht bei allen Patienten mit

- einer nosokomialen Pneumonie

- mit Fieber in Neutropenie und

- mit einer Infektion durch einen Erreger mit einer Resistenz gegen ein oder mehrere Cephalosporine der dritten Generation
eine ausreichende Antibiotikaexposition erreicht werden kann und dass dies mit einer höheren Sterblichkeit einhergeht. Die neue Standarddosierung, bei der eine Dosissteigerung (4,5 g alle 6 h über 30 min) oder eine Verlängerung der Infusionsdauer (4,5 g alle 8 h über 4h) empfohlen wird, führt hingegen bei der Mehrzahl der Patienten zu einer adäquaten Antibiotikaexposition für sensibel („S“) getestete Erreger (192–195). Bei Erregern, bei denen Piperacillin/Tazobactam als „I“ (sensibel bei erhöhter Exposition) auf dem Antibiogramm berichtet wird (typisch P. aeruginosa), ist diese neue Standarddosierung jedoch auch unzureichend und es wird die Gabe einer „hohen Dosierung“ in dieser Situation empfohlen (4,5 g alle 6h über 3 Stunden).

Bei Patienten mit einer eingeschränkten Nierenfunktion soll mindestens die erste Dosis in voller Höhe gegeben werden und die nachfolgende Dosis entsprechend dem Grad der Nierenfunktionsstörung angepasst werden.

7.1.2 Antifungale Substanzen

Bei Therapieversagen sollte eine Identifikation auf Speziesebene angestrebt werden (molekulargenetisch und kulturell), um eine „Durchbruchs-Pilzinfektion“ erkennen zu können bzw. um eine phänotypische Resistenztestung zu ermöglichen. In Deutschland liegt die Azol-Resistenz bei A. fumigatus um 3 % (199). Bei einem Therapieversagen ist, neben dem Ausschluss von Differentialdiagnosen, ein Wechsel der Substanzklasse zu empfehlen. Bei einer Erstlinientherapie mit einem Azol sollte auf liposomales Amphotericin B gewechselt werden (CAVE fehlende Wirkung bei z.B. Scedosporium spp.).

Tabelle 21. Antimykotische Therapie

<table>
<thead>
<tr>
<th>Therapeutische Drug-Monitoring</th>
<th>Dauer</th>
<th>Wichtige Nebenwirkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voriconazol</td>
<td></td>
<td>Hepatotoxizität, neurologische Nebenwirkungen, Halluzinationen, gastrointestinale Nebenwirkungen, Verlängerung der QT-Zeit</td>
</tr>
<tr>
<td>Isavuconazol</td>
<td></td>
<td>Hepatotoxizität, Verkürzung der QT-Zeit</td>
</tr>
<tr>
<td>Posaconazol</td>
<td></td>
<td>Hepatotoxizität</td>
</tr>
<tr>
<td>Liposomales Amphotericin B</td>
<td></td>
<td>Nephrotoxizität, Ototoxizität (deutlich geringer als bei konventionellem Amphotericin B)</td>
</tr>
</tbody>
</table>

7.1.3 Antivirale Substanzen

Es gibt nur wenige Untersuchungen, die die Rolle der typischen Atemwegsviren bei der nosokomialen Pneumonie untersucht haben. Eine aktuelle Arbeit aus USA hat 174 Patienten mit nosokomialer Pneumonie untersucht (27). In ca. einem Viertel der Patienten (22,4 %) wurden Atemwegsviren nachgewiesen. Im Einzelnen fanden sich Rhinovirus (n = 19), Influenza (n = 7), Parainfluenza (n = 6), Coronavirus (n = 5), und Metapneumovirus (n = 4). Von diesen Viren gibt es nur für Influenza zugelassene antivirale Medikamente, welche bei einem Nachweis verabreicht werden sollten. Hier sind die Neuraminidase-Inhibitoren Zanamivir und Oseltamivir zu nennen. Beide verhindern durch Hemmung der Neuraminidase die Freisetzung von Influenzaviren (200). Die Wirksamkeit ist bei Immungesunden innerhalb von 48 Stunden nach Infektion am größten und nimmt danach deutlich ab. Beide Medikamente sind zur Therapie und auch zur Prophylaxe der Influenza in Deutschland zugelassen.

Zanamivir sollte in einer Dosierung von 2x tgl. 600 mg über einen Zeitraum von 5-10 Tagen als intravenöse Infusion angewendet werden. Die Dosierung von Oseltamivir beträgt 2x 75 mg oral über 10 Tage. Zur Therapie einer nosokomialen SARS-CoV2 Pneumonie wird auf die aktuellen Empfehlungen der entsprechenden Leitlinie verwiesen (94).
7.2 Mono- versus Kombinationstherapie

<table>
<thead>
<tr>
<th>Welche Patienten profitieren von einer kalkulierten Kombinationstherapie aus zwei gegenüber grammnegativen Erregern wirksamen Antibiotika?</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Empfehlung</td>
</tr>
</tbody>
</table>
| Evidenz-basiert | Bei Patienten mit septischem Schock und dem Vorliegen eines weiteren Risikofaktors für MRE (Tabelle 14) **sollte** initial eine kalkulierte Kombinationstherapie erfolgen.
Bei Patienten mit septischem Schock und erhöhtem Risiko für *P. aeruginosa* (Tabelle 14) **sollte** bis zum Vorliegen des Ergebnisses der Erregerempfindlichkeitsprüfung eine *P. aeruginosa*-wirksame Kombinationstherapie erfolgen.
Schwache Empfehlung, Empfehlsungsgrad B |
| Sehr niedrige Evidenzqualität/ GRADE ⊗⊗⊗⊗ (201–209) **Starker Konsens** |
| Sterblichkeit |

Entsprechend Tabelle 20, Abbildung 1 wird eine Kombinationstherapie in Fällen eines septischen Schocks mit mindestens einem weiteren Risikofaktor empfohlen.

Die Kombination für grammnegative MRE besteht typischerweise aus einem Betalaktam-Antibiotikum mit Wirksamkeit gegen *P. aeruginosa* und einem Fluorchinolon oder Aminoglykosid (siehe Tabelle 20).

In einer weiteren Metaanalyse zur Kombinationstherapie bei 8504 Patienten aus 50 Studien (13 RCTs, 15 prospektiven Studien, 34 retrospektiven Kohortenstudien) wurde ein Überlebensvorteil für kritisch kranke
Patienten mit septischem Schock berichtet, wobei die Aussagekraft dieser Analyse wegen der methodischen Limitationen ebenfalls eingeschränkt ist (204). Für Patienten mit geringer Krankheitsschwere (keine Sepsis, kein Organversagen) gab es Hinweise für eine höhere Sterblichkeit unter der Kombinationstherapie (204). Als mögliche Ursachen werden die direkte Toxizität der antibakteriellen Substanz, Selektion von resistenten Erregern, Resistenzenentwicklung und Infektionen mit *Clostridioides difficile* genannt (213).

Die CLSI (Clinical Laboratory Standards Institute, USA) sieht die Grenzwerte für *Pseudomonas aeruginosa* bei Aminoglykosiden zuletzt kritisch. Bei der EUCAST werden schon seit einigen Jahren keine Werte mehr für den Einsatz von Aminoglykosiden als Monosubstanz bei systemischen Infektionen angegeben. Somit sind Aminoglykoside keine optimalen Kombinationspartner.

In Bezug auf Fluorchinolone als Kombinationspartner wurde in einer älteren Studie die Monotherapie mit Meropenem mit einer kalkulierten Kombinationstherapie von Meropenem und Ciprofloxacin verglichen. Die 28-Tage-Sterblichkeit war (bei niedriger Sepsisrate) nicht unterschiedlich, wobei in einer Subgruppe mit Infektionen durch MRE (90\% *P. aeruginosa*) ein besseres mikrobiologisches Ansprechen für die Kombinationstherapie ermittelt werden konnte (216).

Zusammenfassend entscheiden Krankheitsschwere (Organversagen/septischer Schock), lokale Resistenzrate, Risikoprofil des Patienten für resistente Erregern (MRE/ *P. aeruginosa*) und die Toxizität über die Indikation für eine Kombinationstherapie und die Substanzwahl.

Eine protrahierte antibakterielle Kombinationstherapie ohne Nachweis von Erregern erscheint bei mangelhafter Evidenz nicht gerechtfertigt und erfordert eine Deeskalation der antibakteriellen Therapie (siehe Kapitel 7.5) bzw. eine erweiterte Diagnostik (Viren, Pilze, immunologische Grunderkrankungen, beatmungsassoziierter Lungenschaden, kardiopulmonale Genese) (217).

7.3 Inhalative antimikrobielle Therapie

<table>
<thead>
<tr>
<th>Sollte bei Patienten mit VAP zusätzlich zur systemischen eine inhalative Antibiotikatherapie durchgeführt werden?</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Empfehlung</td>
</tr>
<tr>
<td>Evidenz-basiert</td>
</tr>
<tr>
<td>Schwache Empfehlung, Empfehlungsgrad B</td>
</tr>
</tbody>
</table>
Auf Grundlage einer systematischen Literatursuche wurden vier Übersichtsarbeiten (218–221) mit Bewertung der Evidenz zur Wirksamkeit einer inhalativen Antibiotikatherapie bei Patienten mit VAP auf die Sterblichkeit, die Eradikationsrate sowie die Verweildauer und Beatmungsdauer identifiziert. Es konnten mit moderater Qualität der Evidenz kein Einfluss auf die Sterblichkeit und Behandlungsdauer, aber verbesserte Eradikationsraten unter allgemeinen inhalativen Antibiotikatherapien gezeigt werden. Ein erhöhtes Auftreten von renalen Nebenwirkungen wurde nicht gesehen.

Hervorzuheben ist die Metaanalyse von Tang et al., in der eine additive Antibiotika-Inhalationstherapie bei VAP untersucht wurde (219). Zwar konnte kein Überlebensvorteil gezeigt werden (relatives Risiko (RR) 1,00, 95% Konfidenzintervall (KI) 0,82–1,21), aber im Vergleich zur alleinigen intravenösen Therapie wurde eine höhere klinische Heilungsrate (RR 1,13, 95% KI 1,02–1,26) und eine häufigere mikrobiologische Eradikation (RR 1,45, 95% KI 1,19–1,76) in der mit inhalativen Antibiotika kombinierten Therapie beobachtet. Allerdings war die inhalative Antibiotikagabe mit einem erhöhten Risiko für einen Bronchospasmus assoziiert.

Die hohen lokalen Konzentrationen im Bronchialsystem nach Inhalation von Antibiotika könnten insbesondere bei Infektionen mit MRE vorteilhaft sein. Die lokale Applikation vermindert den Selektionsdruck auf das Darmmikrobiom und kann bei vorbestehender Niereninsuffizienz einen Vorteil bringen. Unklar ist die Penetration aerosolierter Antibiotika in das betroffene Lungenparenchym insbesondere bei beatmeten Patienten mit schwerer Infektion der Lunge, so dass die Deposition des inhalierten Medikamentes hier möglicherweise nicht ausreicht (222).

Welche Patienten profitieren von einer zusätzlichen inhalativen Antibiotikatherapie?

17. Empfehlung

<table>
<thead>
<tr>
<th>Evidenzbasiert</th>
<th>Schwache Empfehlung, Empfehlungsgrad B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bei Vorliegen multiresistenter gramnegativer Erreger, die nur gegenüber Colistin und/oder Aminoglykosiden empfindlich sind, sollte eine ergänzende inhalative Therapie mit hierfür geeigneten Verneblern zusätzlich zur systemischen Antibiotikatherapie erwogen werden.</td>
<td></td>
</tr>
</tbody>
</table>

Sehr niedrige Evidenzqualität/ GRADE ⚫⚫⚫⚫
(218–221) **Starker Konsens**
Klinisches Ansprechen

Die aktuelle Leitlinie der IDSA/ATS (36) empfiehlt eine inhalative Antibiotikatherapie zusätzlich zur systemischen Antibiotikatherapie bei HAP/VAP durch Carbapenem-resistente gramnegative Erreger, die nur noch auf Aminoglykoside und Polymyxine sensibel sind, oder bei Nachweis von *A. baumannii* mit Sensibilität ausschließlich gegenüber Polymyxinen.
Insbesondere bei Patienten, die systemisch nicht ausreichend oder nur unter Inkaufnahme erheblicher Toxizität behandelbar sind, kann die inhalative Therapie sinnvoll sein.

In einer prospektiven Observationsstudie wurden Patienten mit VAP und Nachweis eines sensiblen \textit{P. aeruginosa} oder \textit{A. baumannii} und intravenöser Therapie mit Patienten und Nachweis multiresistenter \textit{P. aeruginosa} oder \textit{A. baumannii} mit einer inhalativen Colistintherapie in hoher Dosis (3x5 Mio IE) mit und ohne intravenösem Aminoglykosid über 3 Tage hinsichtlich klinischer Heilung und Letalität verglichen (224). Hierbei war die Gruppe der multiresistenten Erreger und unter der Inhalation von Colistin der systemischen Therapie nicht unterlegen.

Allgemeines

7.4 Reevaluation der Therapie

<table>
<thead>
<tr>
<th>18. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experten-konsens</td>
</tr>
<tr>
<td>Eine Reevaluation des Patienten soll 48-72 Stunden nach Beginn der Therapie erfolgen, hierzu gehört eine Überprüfung der initialen Verdachtsdiagnose, die Beurteilung des klinischen Verlaufs, der Ergebnisse der initialen Diagnostik einschließlich der Laborparameter, der mikrobiologischen Diagnostik und ggf. der Bildgebung im Verlauf. Hat sich klinisch und aus der Zusammenschau der Befunde die Verdachtsdiagnose einer HAP nicht bestätigt, soll die Antibiotikatherapie beendet werden. Ergibt die Diagnostik eine Sepsis/ einen septischen Schock mit anderem Fokus, soll die Therapie angepasst werden. Starke Empfehlung</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

48-72h nach Therapiebeginn soll eine systematische Reevaluation des klinischen Ansprechens sowie eine Bewertung der Ergebnisse der mikrobiologischen Diagnostik erfolgen.

Zu diesem Zweck sind folgende Parameter relevant:

- klinisches Ansprechen (Gasaustausch inkl. Oxygenierungsindex und ggf. Beatmungsparameter, Vitalparameter inkl. Temperatur)
- Verlauf der Laborparameter (CRP, PCT), aber auch der Organfunktionsparameter (z.B. Herz, Niere, Leber, Laktat)
- Befunde der Bildgebung (Röntgen-Thorax, Sonographie des Thorax, ggf. CT des Thorax)
- Vorliegende mikrobiologische Ergebnisse
- auf Intensivstation serielle Bestimmung von ITS-Scores (z.B. SOFA)

Sowohl eine Verbesserung der klinischen Parameter und der Organdysfunktion (Oxygenierungsindex, Körpertemperatur, SOFA-Score) als auch ein Abfall von CRP oder PCT an Tag 3-4 sind mit einer günstigen

Angesichts der Unsicherheiten in der Diagnostik impliziert die Evaluation des klinischen Ansprechens durch o.g. Parameter auch eine Reevaluation der Diagnose. Dies gilt sowohl für die HAP des nichtbeatmeten Patienten als auch für Patienten mit VAP, wenngleich aus unterschiedlichen Gründen: im ersteren Fall liegt häufig keine hinreichende mikrobiologische Diagnostik vor, bei VAP resultieren die diagnostischen Unsicherheiten aus der Röntgenthorax-Diagnostik, der antimikrobiellen Vorbehandlung sowie der meist höheren Komplexität der klinischen Situation des Patienten.

In einem Teil der Fälle kann eindeutig das Vorliegen einer VAP bestätigt bzw. verworfen werden. Wird sie bestätigt, soll eine mögliche Deeskalation bzw. Fokussierung der Therapie überprüft und die weitere Therapiedauer festgesetzt werden (siehe Kapitel 7.5 und 7.6).

In einer Vielzahl von Fällen bleibt das Vorliegen einer HAP bzw. VAP ungewiss. Ein strukturierter Umgang mit diesen Ungewissheiten erscheint daher im Hinblick auf dieses Dilemma hilfreich.

Ein solches Schema soll das Bewusstsein aller an der Behandlung Beteiligten für den jeweils geltenden Grad der Ungewissheit schärfen. Zudem ermöglicht es, dass alle Beteiligten zu jeder Zeit (also auch alle Diensthabenden und in Vertretung Stehenden) die Grundlage des jeweils aktuellen therapeutischen Vorgehens nachvollziehen können.

Die Autoren der Leitlinie schlagen daher vor, bei Patienten mit VAP sechs diagnostische Konstellationen zu unterscheiden (siehe Tabelle 22). Die erste Konstellation ist dabei klinisch so selten, dass sie vernachlässigt werden kann.

Dieses Schema kann grundsätzlich auch bei HAP verwandt werden, setzt allerdings das Vorhandensein einer initialen mikrobiologischen Untersuchung unter Einschluss der Untersuchung von respiratorischen Materialien (TBAS oder BALF) voraus.

Tabelle 22. Diagnostische Konstellationen nach erster Evaluation des Therapieansprechens bei Patienten mit VAP (neben dem Röntgenbefund können auch Befunde aus anderer Bildgebung (Sonographie des Thorax, CT des Thorax) hinzugezogen werden)

<table>
<thead>
<tr>
<th>Diagnose Pneumonie</th>
<th>Histologie / Röntgen</th>
<th>Quant.Kultur (BALF* oder TBAS**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I sicher</td>
<td>Histologie positiv</td>
<td>≥ 10^6 (10^5) KBE/mL</td>
</tr>
<tr>
<td>II wahrscheinlich</td>
<td>eindeutiges Infiltrat</td>
<td>≥ 10^6 (10^5) KBE/mL</td>
</tr>
<tr>
<td>III möglich</td>
<td>eindeutiges Infiltrat</td>
<td>≥ 10^2, < 10^6 (10^5) KBE/mL</td>
</tr>
<tr>
<td>IV fraglich</td>
<td>fragliches Infiltrat</td>
<td>jedwedes Ergebnis</td>
</tr>
<tr>
<td>V ausgeschlossen</td>
<td>Infiltrat nicht persistierend</td>
<td>negativ</td>
</tr>
<tr>
<td>VI unklar</td>
<td>eindeutiges Infiltrat</td>
<td>negativ</td>
</tr>
</tbody>
</table>

Dabei muss folgendes beachtet werden:
- die Tabelle berücksichtigt nur die bakteriologische Untersuchung respiratorischer Sekrete. Die Ergebnisse von Blutkulturen müssen zusätzlich einbezogen werden;
- die Ergebnisse der viralen und mykologischen Diagnostik müssen ebenfalls berücksichtigt werden;
- viele Patienten sind antimikrobiell vorbehandelt. Dies reduziert die Aussagekraft negativer bzw. nicht signifikanter Resultate der mikrobiologischen Untersuchungen erheblich; daher sind mikrobiologische Befunde immer auf der Basis der bestehenden Vorbehandlungen zu interpretieren;
- bei nicht-intubierten Patienten stehen mikrobiologische Ergebnisse häufig nicht zur Verfügung. Die Reevaluation kann sich daher häufig nur auf das klinische Bild und Inflammationsparameter stützen (analog zur CAP).

Unter Berücksichtigung dieser Einschränkungen bzw. Ergänzungen entspricht diesen diagnostischen Konstellationen jeweils ein mögliches therapeutisches Vorgehen, das in Tabelle 23 zusammengefasst ist.

Wie ersichtlich, sind nur in den Konstellationen I, II und V eindeutige Empfehlungen zur weiteren Therapie möglich; in III, IV und VI müssen die regelhaften Vorgehensweisen in jedem Setting definiert, im Einzelfall aber auch kalkulierte klinische Entscheidungen getroffen werden. Selbstverständlich muss bei ausgeschlossener VAP und Detektion einer alternativen Infektionsquelle bzw. Vorliegen eines septischen Schocks eine antimikrobielle Therapie auf der Basis dieser Indikationen erfolgen.

Die Optionen unter Konstellation VI sind insbesondere beim Therapieversagen relevant (Kapitel 7.8).

Tabelle 23. Diagnostische Konstellationen mit möglichem therapeutischem Vorgehen bei Patienten mit VAP (Virologische und mykologische Befunde müssen gesondert berücksichtigt werden)

<table>
<thead>
<tr>
<th>Klinische Konstellation</th>
<th>Strategie</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinischer Verdacht auf VAP</td>
<td>Quantitative Kulturen TBAS Kalkulierte Therapie</td>
<td>Vorgehen evident</td>
</tr>
<tr>
<td>Reevaluation nach 48-72 h; sechs klinische Konstellationen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAP sicher oder wahrscheinlich (I oder II)</td>
<td>Fortführung der Therapie Adjustierung nach plausiblen mikrobiologischen Befunden</td>
<td>Vorgehen evident</td>
</tr>
<tr>
<td>VAP möglich, Kulturergebnisse nicht signifikant (III); keine akute Organdysfunktion</td>
<td>Individuelle Abwägung</td>
<td>Vorgehen nicht gesichert; Therapie eher fortführen, ggf. verkürzen</td>
</tr>
<tr>
<td>VAP fraglich, Jedwede Kulturergebnisse (IV); keine akute Organdysfunktion</td>
<td>Individuelle Abwägung</td>
<td>Vorgehen nicht gesichert Therapie eher absetzen, ggf. verkürzen Reduktion des Selektionsdrucks und der Exzess-Letalität durch Übertherapie</td>
</tr>
<tr>
<td>VAP ausgeschlossen (V); Keine akute Organdysfunktion</td>
<td>Beendigung der Therapie</td>
<td>Vorgehen evident</td>
</tr>
<tr>
<td>VAP unklar (VI); keine akute Organdysfunktion</td>
<td>Zweite kalkulierte Therapie oder Steroidkurs oder</td>
<td>Gründe für fehlenden Erregernachweis wahrscheinlich (z.B. antimikrobielle Vorbehandlung) Mögliche Organisierende Pneumonie</td>
</tr>
<tr>
<td>Alternative Infektionsquelle oder Akute Organdysfunktion / septischer Schock</td>
<td>Biopsie oder Beendigung der Therapie</td>
<td>Therapeutische Konsequenz wahrscheinlich Diffuser Alveolarschaden wahrscheinlich</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Fortsetzen bzw. Adjustierung der Therapie</td>
<td>Vorgehen evident</td>
</tr>
</tbody>
</table>

7.5 Deeskalation und Fokussierung der Therapie

Wann kann die Antiinfektive Therapie deeskaliert werden?

19. Empfehlung

<table>
<thead>
<tr>
<th>Evidenzbasiert</th>
<th>Bei Patienten mit klinischer Stabilisierung soll die Therapie auch ohne Erregernachweis deeskaliert werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starke Empfehlung, Empfehlungsgrad A</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ☀☀☀</td>
<td>Sterblichkeit</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ☀☼</td>
<td>Eradikationsrate</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ☀☼</td>
<td>Beatmungstage</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ☀☼</td>
<td>Verweildauer</td>
</tr>
<tr>
<td>(38,228–232) Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Wann kann die Antiinfektive Therapie fokussiert werden?

20. Empfehlung

<table>
<thead>
<tr>
<th>Evidenzbasiert</th>
<th>Bei Patienten mit mikrobiologischem Nachweis eines relevanten Erregers soll die Therapie fokussiert werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starke Empfehlung, Empfehlungsgrad A</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ☀☀</td>
<td>Sterblichkeit</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ☀☼</td>
<td>Eradikationsrate</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ☀☼</td>
<td>Beatmungstage</td>
</tr>
<tr>
<td>Sehr niedrige Evidenzqualität/ GRADE ☀☼</td>
<td>Verweildauer</td>
</tr>
<tr>
<td>(38,212,228,231–233) Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

In einer spanischen multizentrischen prospektiven Observationsstudie wurden 244 kritisch kranke Patienten mit nosokomialer Pneumonie auf 24 Intensivstationen eingeschlossen (212). Bei 94 Patienten hätte aufgrund des nachgewiesenen Erregers eine Fokussierung der Therapie durchgeführt werden können, bei 56 Patienten
erfolgte diese. Im Vergleich der Gruppen zeigte sich eine höhere Wirksamkeit auf die Letalität nach Fokussierung der Therapie. In einer Sekundäruntersuchung aus Kanada und den USA ergab sich für die fokussierte Therapie ein besseres Outcome mit einer geringeren Anwendungsichte von Breitspektrumantibiotika (232).

7.6 Therapiedauer

Wie lange sollte eine nosokomiale Pneumonie mit Antibiotika behandelt werden?

<table>
<thead>
<tr>
<th>Evidenzbasiert</th>
<th>Die Therapiedauer sollte bei gutem Ansprechen des Patienten 7-8 Tage betragen. Im Einzelfall sind längere Therapiedauern erforderlich (z.B. S. aureus Bakteriämie, nicht sanierbares Empyem, Abszess).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwache Empfehlung, Empfehlungsgrad B</td>
<td>Hohe Evidenzqualität/ GRADE ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕ Moderate Evidenzqualität/ GRADE ⊕⊕⊕ ⊕⊕⊕ (235–241) Starker Konsens</td>
</tr>
<tr>
<td></td>
<td>Liegedauer</td>
</tr>
</tbody>
</table>

In den letzten zwei Jahrzehnten sind mehrere prospektive, randomisierte, kontrollierte Studien bei Patienten mit Ventilator-assoziiert Pneumonie zum Vergleich einer kürzeren (7-8 Tage) gegenüber einer längeren (10-15 Tage) Therapiedauer durchgeführt worden (237–241). In einer aktuellen Meta-Analyse (235), die diese fünf Studien mit insgesamt 1069 Patienten mit beatmungsassoziierter Pneumonie einschließt unterschied sich eine kürzere Therapiedauer gegenüber einer längeren Therapiedauer hinsichtlich der Endpunkte Sterblichkeit,
Liegendauer, Rückfall-Rate und dem Auftreten multiresistenter Erreger bei der Behandlung der beatmungsassozierten Pneumonie nicht. Dies gilt auch für die Gruppe von Patienten mit einer HAP aufgrund von gramnegativen Non-Fermentern. In drei der fünf eingeschlossenen Studien wurden anhand von Subgruppenanalysen insgesamt 340 Patienten mit HAP bei gramnegativen Non-Fermentern (davon überwiegend mit Nachweis von *Pseudomonas aeruginosa*) untersucht. Hier fand sich ebenfalls kein signifikanter Unterschied hinsichtlich der Rekurrenz bzw. der Rückfallrate zwischen der längeren und der kürzeren Therapiedauer (Odds ratio (OR) = 1.90, 95% CI 0.93-3.33, p = 0.05 und OR = 1.76, 95% CI 0.93-3.33, p = 0.08) ebenso auch kein signifikanter Unterschied bei der Betrachtung der 28-Tage-Sterblichkeit (OR = 1.24, 95% CI 0.92-1.67, p = 0.16). Zur Therapiedauer der nosokomialen Pneumonie bei nicht beatmeten Patienten gibt es keine Studien.

<table>
<thead>
<tr>
<th>Sollte ein PCT-gestützter Algorithmus bei Patienten mit nosokomialer Pneumonie eingesetzt werden, um die Behandlungsduauer mit Antibiotika zu verkürzen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Empfehlung</td>
</tr>
<tr>
<td>Evidenzbasiert</td>
</tr>
<tr>
<td>Ein PCT-gestützter Algorithmus kann bei Patienten mit HAP/VAP eingesetzt werden, um die Behandlungsduauer mit Antibiotika zu verkürzen.</td>
</tr>
<tr>
<td>Empfehlung offen, Empfehlungsgrad 0</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ⊕⊕⊕⊕</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ⊕⊕⊕⊕</td>
</tr>
<tr>
<td>(84,245–250) Mehrheitliche Zustimmung</td>
</tr>
<tr>
<td>Sterblichkeit</td>
</tr>
<tr>
<td>Antibiotikatage</td>
</tr>
</tbody>
</table>

Diese Fragestellung wurde in den letzten Jahren durch mehrere, prospektive, randomisierte Studien und zwei aktuelle Meta-Analysen untersucht (84,246–250). Alle aufgeführten Primärstudien konnten im Rahmen eines definierten Protokolls der PCT-Bestimmung und der Reaktionen auf die PCT-Werte (mit der Möglichkeit des „overrulings“ durch die Kliniker) eine Reduktion der Antibiotikatherapiedauer mit Hilfe von PCT-gestützten Algorithmen demonstrieren. Mit Ausnahme von De Jong et al. (mediane Therapiedauer 5 Tage (3-9) in der
PCT-gesteuerten Gruppe vs. 7 Tage (4-11) in der Kontrollgruppe) konnte jedoch in keiner dieser Studien eine Reduktion der Therapiedauer auf unter sieben Tage in der Interventionsgruppe gezeigt werden.

De Jong et al. konnten in ihrer Studie mit 1575 eingeschlossenen, kritisch-kranken Patienten mit Sepsis und septischem Schock (davon zwei Drittel mit einem pulmonalen Fokus) darüber hinaus eine signifikant geringere Sterblichkeit in der Interventionsgruppe gegenüber der Kontrollgruppe (20 % versus 27 %, Differenz 6,6 %, 95 % Kl 1,3–11,9) zeigen (248). Auch nach einem Jahr war dieser Unterschied noch signifikant (36% versus 43 %, Differenz 7.4 %, 95% Kl 1,3-13,8). Dieses Ergebnis führen die Autoren der Studie auf eine möglicherweise in der Interventionsgruppe frühzeitiger durchgeführte Diagnostik und Behandlung nicht-bakterieller Ursachen bei Patienten mit primär niedrigen PCT-Werten zurück. Daneben spielt möglicherweise auch eine Reduktion unerwünschter Arzneimittelwirkungen durch eine kürzere Behandlungsdauer eine Rolle. Eine wichtige Limitation der Studie ist, dass etwa die Hälfte der eingeschlossenen Patienten eine ambulant erworbene Infektion aufwies, somit die Ergebnisse nicht uneingeschränkt auf die nosokomiale Pneumonie zu übertragen sind.

7.7 Gezielte Therapie bei speziellen Erregern

| Welche ist die adäquate gezielte Therapie bei einem Nachweis von Infektionen mit: ESBL-oder AmpC-bildenden Enterobacterales - Carbapenem-resistenten Enterobacterales - Acinetobacter baumannii - Stenotrophomonas maltophilia? |
|---|---|
| **23. Empfehlung** |
| Experten-konsens | **ESBL-bildende Stämme:** Bei ESBL-positiven Enterobacterales sollen Carbapeneme eingesetzt werden.
Starke Empfehlung
AmpC-bildende Stämme: Bei Enterobacterales mit einem relevanten Risiko für eine AmpC Überexpression (*Enterobacter cloacae, Klebsiella aerogenes, Citrobacter freundii*) sollte auch bei nachgewiesener in vitro Sensibilität gegenüber Cephalosporinen und/oder Piperacillin/Tazobactam eine gezielte Therapie mit Carbapenemen oder Fluorchinolonen durchgeführt werden. Wurde eine Cefepim-Empfindlichkeit nachgewiesen, kann auch dieses eingesetzt werden.
Schwache Empfehlung
CRE-Stämme: Bei Resistenz gegenüber allen Standardsubstanzen sollte - möglichst in Rücksprache mit einem Infektiologen/Mikrobiologen- eine Therapie mit einem sensibel getesteten Reserve-Betalaktam (siehe Tabelle 19) erfolgen.
Schwache Empfehlung
Acinetobacter baumannii: Bei Carbapenem-sensiblen Acinetobacter baumannii sollen Carbapeneme als Therapie der Wahl gegeben werden.
Starke Empfehlung
Stenotrophomonas maltophilia: Zunächst soll die klinische Relevanz des Nachweises geprüft werden. Bei in vitro-Empfindlichkeit sollte Cotrimoxazol (in hoher Dosierung 8-12|
mg/kgKG, bezogen auf Trimethoprim-Komponente), alternativ Levofloxacin oder Moxifloxacin, eingesetzt werden. Bei Resistenz gegenüber Cotrimoxazol sollte eine ergänzende Empfindlichkeitsprüfung auf weitere Therapieoptionen nach Rücksprache mit einem Mikrobiologen/Infektiologen erfolgen.

Schwache Empfehlung

Wird bei der Empfindlichkeitsprüfung für die genannten Standardsubstanzen ein „I“ (sensibel bei erhöhter Exposition) ausgewiesen, muss die Dosis entsprechend angepasst werden (siehe Tabelle 19). Bei Resistenz gegenüber allen Standardsubstanzen soll in Rücksprache mit einem Infektiologen oder Mikrobiologen, eine Therapie mit einem sensibel getesteten Reserve-Beta-Laktam (siehe Tabelle 19) erfolgen.

Starke Empfehlung

Schwache Empfehlung

Starke Empfehlung

Pneumonien durch multiresistente Bakterien gehen häufiger als bei anderen Erregern mit einem Therapieversagen einher, vor allem bei inadäquater Therapie (214) oder verzögertem Therapiebeginn (251).

MRSA: Für MRSA konnte gezeigt werden, dass bei angemessener Therapie die Letalität im Vergleich zu MSSA nicht erhöht ist (252). Eine Meta-Analyse basierend auf 7 RCT mit insgesamt 1239 Patienten mit gesicherter MRSA-Pneumonie zeigte ein signifikant besseres klinisches Ansprechen (RR = 0,81, 95% CI = 0,71-0,92) und eine signifikant häufigere MRSA-Eradikation (RR = 0,71, 95% CI = 0,62-0,81) bei Therapie mit Linezolid gegenüber Vancomycin. Bei Nebenwirkungen und Letalität gab es keine signifikanten Unterschiede (253). Da die Wirksamkeit von Linezolid als bakteriostatisches Antibiotikum bei einer pneumogenen MRSA-Blutstrominfektion kaum untersucht ist, sollte bei MRSA HAP mit positiver Blutkultur Vancomycin (alternativ Ceftobiprol s.u.) für die gezielte initiale Therapie erwogen werden.

Die bevorzugte Therapie von nosokomialen MRSA-Pneumonien bleibt dem Ermessen des Klinikers und seiner Einschätzung der Studienlage überlassen.

In der Leitlinie der IDSA zur gezielten Therapie multi-resistenter Erreger werden daher die neuen Betalaktame in Abhängigkeit von der Resistenztestung gegenüber Colistin favorisiert (264). Welches der neuen Betalaktame eingesetzt werden sollte, hängt u.a. davon ab, ob eine Carbapenemresistenz durch eine Kombination von Resistenzmechanismen wie Porinverlust und Effluxpumpen oder durch Carbapenemase(n) bedingt ist und welche Carbapenemmasen nachgewiesen wurden.

AmpC-bildende Stämme: Bestimmte Spezies produzieren eine AmpC Betalaktamase, deren Produktion erst bei Kontakt mit einem Betalaktam hoch reguliert wird. Enterobacter cloacae, Klebsiella aerogenes, Citrobacter freundii und Hafnia alvei (bei Hafnia alvei bislang nur in vitro Daten) haben ein mittleres bis hohes Risiko für eine klinisch relevante AmpC-Produktion, Serratia marcescens und Morganella morganii ein niedriges. Eine AmpC Aktivierung kann allerdings auch bei weiteren Spezies auftreten (264). AmpC, die ähnlich ESBL eine Resistenz gegen Cephalosporine und BL/BLI vermittelt, wird in der mikrobiologischen Resistenztestung oftmals nicht nachgewiesen, kann aber bei einer hohen Erregerlast im Patienten zu einem Therapieversagen führen. Lediglich Cefepim zeigt eine gewisse Stabilität gegenüber AmpC. Die EUCAST (192) und die IDSA Leitlinie (264) empfiehlt daher bei folgenden o.g. Spezies keine gezielte Therapie mit einem BL/BLI oder Cephalosporin (Ausnahme: Cefepim bis zu einer MHK <=2 mg/l). Die klinische Datenlage beschränkt sich auf retrospektive Beobachtungen (268,269).

S. maltophilia: Der Nachweis von *S. maltophilia* in respiratorischen Isolaten ist häufig die Folge einer prolongierten Therapie mit einem Carbapenem. Die klinische Bedeutung ist oft zweifelhaft und sollte immer kritisch geprüft werden (279). Bei Therapiebedürftigkeit wurden Cotrimoxazol (Trimethoprim als entscheidender Wirkstoff-höchste Dosierung) und Tigecyclin eingesetzt (280). Für Cefiderocol liegen wenige Fallberichte vor, die eine Einsetzbarkeit nahelegen. Die Empfindlichkeitstestung ist nach EUCAST (European Committee on Antimicrobial Susceptibility Testing) sowie CLSI (Clinical & Laboratory Standards Institute) möglich.

7.8 Therapieversagen

<table>
<thead>
<tr>
<th>Welches Vorgehen sollte bei einem Therapieversagen gewählt werden?</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Empfehlung</td>
</tr>
<tr>
<td>Experten-konsens</td>
</tr>
<tr>
<td>Schwache Empfehlung</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Ein Therapieversagen bei HAP kann eine vital bedrohliche Situation darstellen. Bei effektiver Therapie sollte sich, analog zur CAP, innerhalb von 72h eine klinische Stabilisierung einstellen. Mögliche Anzeichen für das Nichtansprechen der Therapie sind:

1. fehlende klinische Besserung,
2. radiologische Progression,
3. fehlende Besserung des SOFA-Scores (Sequential Organ Failure Assessment) (226),
4. keine Abnahme des CRPs an Tag 4 (281),
5. Isolierung eines neuen Erregers an Tag 3 (282).

Eine allgemein anerkannte Definition des Therapieversagens ist demgegenüber nicht verfügbar.

Die multivariate post-hoc-Analyse eines RCT mit 740 Patienten fand eine fehlende Verbesserung von paO2/FiO2 an Tag 3 als unabhängigen Prädiktor für ein Therapieversagen (283). In einer prospektiven Analyse an 335 Patienten konnte zusätzlich eine ausbleibende Besserung des SOFA-Scores an den Tagen 1-5 als unabhängiger Prädiktor für Therapieversagen gefunden werden (226). Ein Therapieversagen kann bei definierten Komorbiditäten (Tabelle 24) zuweilen schwer von einem verzögerten Ansprechen der Therapie unterschieden werden.

Tabelle 24: Komorbiditäten, die ein Therapieansprechen verzögern können

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>Folge</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>Abhusten und mukoziilläre Clearance gestört</td>
</tr>
<tr>
<td>Tumor erkrankung</td>
<td>Kachexie, Immunfunktion gestört, Immunsuppression durch Chemotherapie, verändertes Mikrobiom / Besiedlung</td>
</tr>
<tr>
<td>Alkoholerkrankung</td>
<td>Aspiration, Mangelenährung, eingeschränkte Neutrophilenfunktion</td>
</tr>
<tr>
<td>Neurologische Erkrankungen</td>
<td>Aspiration, gestörte Clearance von Sekreten</td>
</tr>
</tbody>
</table>
Herzinsuffizienz | Odem, gestörte Lymphdrainage
---|---
Niereninsuffizienz, chronisch | Gestörte Makrophagen- und Neutrophilenfunktion, verminderte humorale Immunität
Diabetes mellitus | Neutrophilenfunktion gestört, zellvermittelte Immunität vermindert
Poststenotische Pneumonie | Bronchiale Obstruktion, gestörte mukozilläre Clearance mit Gefahr des sekundären Lungenabszesses.

Die Ursachen eines Therapieversagens bei HAP sind vielfältig (Tabelle 25 und 26).

Tabelle 25: Gründe für Therapieversagen trotz korrekter Diagnose einer HAP (282)

<table>
<thead>
<tr>
<th>Grund für Therapieversagen</th>
<th>Mögliche Behandlungsstrategien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadäquate Antibiotikatherapie</td>
<td>Eskalation der Behandlung je nach Kulturergebnissen, Gram-Färbung, Risikofaktoren für MDR-Erreger oder Überwachungskulturen</td>
</tr>
<tr>
<td>Unzureichende Antibiotikadosierung</td>
<td>Gabe von prolongierten Antibiotikainfusionen, TDM, ggf. Wechsel der antimikrobiellen Therapie, wenn keine ausreichenden Wirkspiegel erreicht werden</td>
</tr>
<tr>
<td>Nicht von der Therapie erfasste Erreger (HSV, Aspergillus spp)</td>
<td>Eskalation der antimikrobiellen Behandlung ggf. Erweiterung der Therapie um Virostatika, Antimykotika</td>
</tr>
<tr>
<td>Dekompensierte Komorbiditäten oder Grunderkrankungen</td>
<td>Behandlung der Grunderkrankung</td>
</tr>
<tr>
<td>Fehlende Fokussanierung</td>
<td>Sanierung des Fokus, z. B. Drainage eines Pleuraempyems</td>
</tr>
<tr>
<td>Schwere Pneumonie mit der Folge eines diffusen Alveolarschadens (DAD)</td>
<td>Keine kausale Therapie bekannt</td>
</tr>
</tbody>
</table>

Eine Virus-Diagnostik, insbesondere für Influenza und SARS-CoV2, kann hierbei sinnvoll sein. Bei therapierefraktärer HAP kann auch eine quantitative PCR auf Herpes simplex Virus (HSV) und Cytomegalievirus (CMV) erwogen werden.
Welches Vorgehen sollte bei einem Therapieversagen und positivem HSV-Nachweis gewählt werden?

<table>
<thead>
<tr>
<th>25. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidenz-basiert</td>
</tr>
<tr>
<td>Hohe Evidenzqualität/ GRADE ⚪⚪⚪⚪</td>
</tr>
<tr>
<td>Niedrige Evidenzqualität/ GRADE ⚪⚪cido</td>
</tr>
<tr>
<td>(287,288) Starker Konsens</td>
</tr>
</tbody>
</table>

Bei Vorliegen eines positiven HSV-Befundes in der BAL (Viruslast > 10⁵ Genomkopien/ml) zeigt sowohl eine systematische Übersicht von 8 Studien (287) als auch eine randomisierte Studie (288) eine Reduktion der Sterblichkeit durch eine Aciclovir-Therapie. In der randomisierten Studie von Luyt et al. zeigte sich eine Hazard Ratio für Tod innerhalb von 60 Tagen nach der Randomisierung von 0,61 (95% KI, 0,37-0,99; p = 0,047) in der Aciclovir-Gruppe im Vergleich zur Kontrollgruppe. Demgegenüber konnte in der systematischen Übersicht von Hagel et al. eine reduzierte Krankenhaussterblichkeit bei beatmeten Patienten mit Herpes-Simplex-Viren in den Atemwegen unter Aciclovirtherapie gezeigt werden (RR 0,74, 95% KI, 0,64-0,85) (287).

Da alle Ergebnisse eine Reduktion der Sterblichkeit anzeigen, wurde die Evidenz für eine reduzierte Sterblichkeit unter Aciclovir als moderat bewertet.

In einer randomisierten Studie mit insgesamt 238 Patienten wurden die Beatmungs- und Liegezeit auf Intensivstation untersucht (288). Der HSV-Nachweis erfolgte hierbei im oropharyngealen Abstrich, was die Übertragbarkeit auf die nosokomiale Pneumonie deutlich eingeschränkt. Die Liegezeit auf der Intensivstation konnte in dieser Arbeit von medianen 20 (IQR 12-41) um 3 Tage auf 17 Tage (IQR 7-23) und die Beatmungszeit von medianen 17 (IQR 7-30) um 4 Tage auf 13 (IQR 7-23) Tage gesenkt werden. Ein signifikanter Unterschied zwischen den Ergebnissen lag nicht vor: Die Evidenz für eine Aciclovir-Therapie bei HSV-Nachweis zur Senkung der Liegedauer wird als niedrig bewertet.

Zusammenfassend kann aufgrund der aktuell vorliegenden geringen Evidenz bei Therapieversagen unter Antibiotikatherapie und gleichzeitigem Nachweis von HSV in der BAL mit hoher Viruslast eine Therapie mit Aciclovir erwogen werden. Die Dosierung beträgt 3 x täglich intravenös mit 5 mg/kg über 10-14 Tage und muss bei eingeschränkter Nierenfunktion und unter Nierenersatzverfahren angepasst werden.

Eine CMV-Reaktivierung kann ebenfalls mit einem verzögerten Therapieansprechen bei HAP einhergehen. Eine präemptive Therapie zeigt aber keinen Vorteil und sollte deshalb nicht durchgeführt werden (289).

Bei Intensivpatienten sollte bei Therapieversagen eine Aspergillose in Betracht gezogen werden. In einer prospektiven multizentrischen Studie wurde bei 12 % aller nicht neutropenen Patienten mit Verdacht auf VAP eine mögliche Aspergillose beschrieben (127).

Tabelle 26. Nicht-infektiöse Ursachen für Therapieversagen

<table>
<thead>
<tr>
<th>Erkrankungen</th>
<th>Häufig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kardiale Ursachen</td>
<td>Linksherzinsuffizienz, Hypertonieherz, Pleuraergüsse</td>
</tr>
<tr>
<td>Lungenarterienembolie</td>
<td>Rechtsherzinsuffizienz, Pleuraergüsse</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Pulmonale Ursachen</td>
<td>Atelektase</td>
</tr>
<tr>
<td></td>
<td>Organisierende Pneumonie</td>
</tr>
<tr>
<td></td>
<td>Diffuser Alveolarschaden (DAD)</td>
</tr>
<tr>
<td>Selten</td>
<td></td>
</tr>
<tr>
<td>Immunologische</td>
<td>Vaskulitis</td>
</tr>
<tr>
<td>Erkrankungen</td>
<td>Sarkoidose</td>
</tr>
<tr>
<td></td>
<td>Eosinophile Pneumonie</td>
</tr>
<tr>
<td></td>
<td>Diffuse alveoläre Hämmorrhagie</td>
</tr>
<tr>
<td>Arzneimitteltoxizität</td>
<td>Amiodaron, Methotrexat, Bleomycin, Checkpoint-Inhibitoren u. a.</td>
</tr>
</tbody>
</table>

8 Antibiotic Stewardship

Sollen ABS-Maßnahmen bei der Nosokomialen Pneumonie angewendet werden?

<table>
<thead>
<tr>
<th>26. Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidenz-basiert</td>
</tr>
<tr>
<td>Moderate Evidenzqualität/ GRADE ⊕⊕⊕ ⊝</td>
</tr>
<tr>
<td>Niedrige Evidenzqualität/ GRADE ⊕ ⊕ ⊝</td>
</tr>
<tr>
<td>Niedrige Evidenzqualität/ GRADE ⊕ ⊕ ⊝</td>
</tr>
<tr>
<td>(76,290–297) Starker Konsens</td>
</tr>
</tbody>
</table>

Antibiotic Stewardship (ABS)-Interventionen sollen analog der S3-Leitlinie (Strategien zur Sicherung zur Verbesserung rationaler Antibiotika-Anwendung im Krankenhaus) bei Patienten mit nosokomialer Pneumonie durch ein multidisziplinäres ABS-Team durchgeführt werden (298). Wichtige Strategien zur Optimierung des Verordnungsverhaltens bezogen auf die nosokomiale Pneumonie sind lokale Behandlungsleitlinien/-pfade, Freigaberegelungen, Fortbildungen und ABS-Visiten. Behandlungsleitlinien sollten auf der Basis von nationalen Leitlinien erstellt, an lokale Resistenzstatistiken angepasst und geschult werden. Im Rahmen von ABS-Visiten werden antimikrobielle Therapien hinsichtlich Indikation, Substanzwahl, Dosierung, Applikationsart und der Therapiedauer evaluiert. Empfehlungen zur Optimierung können als direktes Feedback erfolgen. Fortbildungen sollten aktiv durchgeführt werden und eine Rückmeldung zur Verschreibungspraxis beinhalten. Strategien zur Therapieoptimierung sollen beim Management von nosokomialen Pneumonien angewandt werden. Dieses betrifft vor allem die Dosisoptimierung sowie das TDM für ausgewählte Antinfektiva (Kapitel 7.1.1.1), Deeskalation und Fokussierung der Therapie (Kapitel 7.5) und Einhaltung der empfohlenen Therapiedauer (Kapitel 7.6). Eine zentrale Rolle spielt die
Reevaluation der Therapie (292). Eine kalkuliert begonnene Therapie soll bei jedem Patienten erneut gepflogen und wenn nötig umgestellt oder beendet werden.

Eine Metaanalyse untersuchte einzelne ABS-Interventionen in Bezug auf die Endpunkte klinisches Outcome, Nebenwirkungen, Resistenzenentwicklung und Kosten (295). Es konnte eine Verringerung der Letalität v.a. durch eine leitliniengerechte Behandlung gezeigt werden. Die meisten Studien bezogen sich auf die CAP, einige auf die HAP. Die Interventionen wurden hierbei einzeln untersucht, die Autoren wiesen jedoch darauf hin, dass der Effekt bei Implementierung eines Maßnahmenbündels möglicherweise größer wäre.

Die Umsetzung dieser Strategien sollte durch Anwendung von geeigneten Qualitätsindikatoren regelmäßig überprüft werden. Für die nosokomiale Pneumonie gibt es bislang keine ausreichende Evidenz, für die CAP und die Exazerbation der COPD sind Qualitätsindikatoren beschrieben und untersucht (299,300).

<table>
<thead>
<tr>
<th>2.</th>
<th>Best practice statement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bei Hinweisen auf eine Betalaktam-Unverträglichkeit/-allergie soll diese überprüft und klassifiziert werden (Delabeling).</td>
</tr>
</tbody>
</table>

Betalaktam-Allergie) sollte bei milderen Allergieformen mittels Anamnese durch ein geschultes ABS-Team erfolgen (302).
9 Tabellen- und Abbildungsverzeichnis

Abbildung 1: Flussdiagramm zur kalkulierten Therapie der HAP
Tabelle 1: Beteiligte Fachgesellschaften, Organisationen und Mandatsträger
Tabelle 2: Methodische Unterstützung
Tabelle 3: Weitere Teilnehmende
Tabelle 4: Arbeitsgruppen
Tabelle 5: Abkürzungen
Tabelle 6: Vierstufige Evidenzbewertung nach GRADE
Tabelle 7: Dreistufiges Schema zur Graduierung von Empfehlungen
Tabelle 8: Feststellung der Konsensstärke
Tabelle 9: Definition der HAP und deren Subgruppen
Tabelle 10: Bakterielle Infektionserreger der nosokomialen Pneumonie
Tabelle 11: Erregerspektrum bei nosokomialer Pneumonie (KISS 2017 - 2021)
Tabelle 12: Erregerspektrum der nosokomialen Pneumonie in verschiedenen geographischen Regionen
Tabelle 14: Therapierelevante Risikofaktoren für multiresistente Infektionserreger bei der HAP
Tabelle 15: Unterschiede zwischen neutropenen Patienten und nicht-neutropenen ITS-Patienten mit IPA.
Tabelle 16: Empfohlene EORTC/MSG Diagnosekriterien für die gesicherte und wahrscheinliche IPA bei Patienten auf Intensivstation
Tabelle 17: Methodische Voraussetzungen zur Gewinnung qualitativ hochwertiger diagnostischer Proben aus dem unteren Respirationstrakt
Tabelle 18: Qualitätsparameter bei Röntgenthoraxaufnahmen im Liegen
Tabelle 19: Antibiotika zur Therapie der nosokomialen Pneumonie
Tabelle 20: Kalkulierte Therapie bei nosokomialer Pneumonie
Tabelle 21: Antimykotische Therapie
Tabelle 22: Diagnostische Konstellationen nach erster Evaluation des Therapieansprechens bei Patienten mit VAP
Tabelle 23: Diagnostische Konstellationen mit möglichem therapeutischem Vorgehen bei Patienten mit VAP
Tabelle 24: Komorbiditäten, die ein Therapieansprechen verzögern können
Tabelle 25: Gründe für Therapieversagen trotz korrekter Diagnose einer HAP
Tabelle 26: Nicht-infektiöse Ursachen für Therapieversagen
10 Literaturverzeichnis

1. Dalhoff K, Abele-Horn M, Andreas S, Deja M, Ewig S, Gastmeier P, u. a. [Epidemiology, Diagnosis and Treatment of Adult Patients with Nosocomial Pneumonia - Update 2017 - S3 Guideline of the German Society for Anaesthesiology and Intensive Care Medicine, the German Society for Infectious Diseases, the German Society for Hygiene and Microbiology, the German Respiratory Society and the Paul-Ehrlich-Society for Chemotherapy, the German Radiological Society and the Society for Virology]. Pneumol Stuttg Ger. 2018;72(1):15–63.

14. Ewig S, Kolditz M, Pletz M, Altiner A, Albrich W, Drömann D, u. a. [Management of Adult Community-Acquired Pneumonia and Prevention - Update 2021 - Guideline of the German Respiratory Society (DGP), the Paul-Ehrlich-Society for Chemotherapy (PEG), the German Society for Infectious Diseases (DGIm), the German Society of Medical Intensive Care and Emergency Medicine (DGIIIN), the German Biological Society (DGV), the Competence Network CAPNETZ, the German College of General Practitioner and Family Physicians (DEGAM), the German Society for Geriatric Medicine (DGG), the German Palliative Society (DGP), the Austrian Society of Pneumology Society (ÖGP), the Austrian Society for Infectious and Tropical Diseases (ÖGIT), the Swiss Respiratory Society (SPG) and the Swiss Society for Infectious Diseases Society (SSI)]. Pneumol Stuttg Ger. September 2021;75(9):665–729.
15. NRZ. "ITS-KISS Referenzdaten aus der Infektionssurveillance für nosokomiale Infektionen auf Intensivstationen. 2022.

94. Stefan Kluge, Uwe Janssens, Tobias Welte, Steffen Weber-Carstens, Gereon Schälte, Christoph D. Spinner, Jakob J. Malin, Petra Gastmeier, Florian Langer, Henrik Bracht, Michael Westhoff, Michael Pfeifer, Klaus F. Rabe, Florian Hoffmann, Bernd W. Böttiger,. S3-Leitlinie - Empfehlungen zur stationären Therapie von Patienten mit COVID-19. AWMF-Register-Nr. 113/001;

Stain-Guided Initial Antibiotic Therapy on Clinical Response in Patients With Ventilator-Associated
Pneumonia: The GRACE-VAP Randomized Clinical Trial. JAMA Netw Open. 1. April
2022;5(4):e226136.

in bronchoalveolar lavage fluid for the diagnosis of ventilator-associated pneumonia: a prospective

107. Baselski VS, el-Torky M, Coalson JJ, Griffin JP. The standardization of criteria for processing
and interpreting laboratory specimens in patients with suspected ventilator-associated pneumonia.

of protected specimen brush and bronchoalveolar lavage in nosocomial pneumonia: impact of

PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia
at risk of Gram-negative bacterial infection (Flagship II): a multicentre, randomised controlled trial.
Lancet Respir Med. 23. Mai 2022;S2213-2600(22)00086-8.

PCR and procalcitonin to reduce antibiotic exposure in severe SARS-CoV-2 pneumonia: a
multicentre randomized controlled trial. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect

PCR in the bronchoalveolar lavage fluid of non-intubated patients with suspected pulmonary

112. Enne VI, Aydin A, Baldan R, Owen DR, Richardson H, Ricciardi F, u. a. Multicentre evaluation
of two multiplex PCR platforms for the rapid microbiological investigation of nosocomial pneumonia

113. Luyt CE, Hékimian G, Bonnet I, Bréchot N, Schmidt M, Robert J, u. a. Usefulness of point-of-
care multiplex PCR to rapidly identify pathogens responsible for ventilator-associated pneumonia

114. High J, Enne VI, Barber JA, Brealey D, Turner DA, Horne R, u. a. INHALE: the impact of using
FilmArray Pneumonia Panel molecular diagnostics for hospital-acquired and ventilator-associated
pneumonia on antimicrobial stewardship and patient outcomes in UK Critical Care—study protocol

existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, adult patients:

combination with 1,3-β-D-glucan or aspergillus-lateral flow device for the diagnosis of invasive

meta-analysis of clinical outcomes associated with isavuconazole versus relevant comparators for

amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-

147. Solé Violán J, Fernández JA, Benítez AB, Cardeñosa Cendrero JA, Rodríguez de Castro F. Impact of quantitative invasive diagnostic techniques in the management and outcome of

178. Yakovlev SV, Stratchounski LS, Woods GL, Adeyi B, McCarron KA, Ginanni JA, u. a. Ertapenem versus cefepime for initial empirical treatment of pneumonia acquired in skilled-care facilities or in...

