publiziert bei:

AWMF-Register Nr.

085-003

Klasse:

S2e

Leitlinieninitiative

DEUTSCHE GESELLSCHAFT FÜR

ULTRASCHALL IN DER MEDIZIN

085-003 S2e Leitlinie (Leitlinienreport)

Fraktursonografie

Deutsche Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM)

und

Deutsche Gesellschaft für Orthopädie und Unfallchirurgie e.V. (DGOU)

Deutsche Gesellschaft für Kinderchirurgie e.V. (DGKCH)

Deutsche Röntgengesellschaft e.V. (DRG)

Deutsche Gesellschaft für Handchirurgie e.V. (DGH)

Deutsche Gesellschaft für Kinder- und Jugendmedizin e.V. (DGKJ)

Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie e.V. (DGOOC)

Gesellschaft für Pädiatrische Radiologie e.V. (GPR)

Deutsche Gesellschaft für Unfallchirurgie e.V. (DGU)

Version 1.0

gültig von: 1.2.2023 bis: 31.1.2028

Impressum

Herausgebende

Federführende Fachgesellschaft

DEGUM

Deutsche Gesellschaft für Ultraschall in der Medizin

Charlottenstr. 79/80

10117 Berlin

Tel.: +49 (0)30 2060 8888-0 Fax: +49 (0)30 2060 8888-90 Internet: <u>www.degum.de</u>

E-Mail: geschaeftsstelle@degum.de

Weitere beteiligte Fachgesellschaften

Deutsche Gesellschaft für Orthopädie und Unfallchirurgie e.V. (DGOU)

Deutsche Gesellschaft für Kinderchirurgie e.V. (DGKCH)

Deutsche Röntgengesellschaft e.V. (DRG)

Deutsche Gesellschaft für Handchirurgie e.V. (DGH)

Deutsche Gesellschaft für Kinder- und Jugendmedizin e.V. (DGKJ)

Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie e.V. (DGOOC)

Gesellschaft für Pädiatrische Radiologie e.V. (GPR) Deutsche Gesellschaft für Unfallchirurgie e.V. (DGU)

Bitte wie folgt zitieren:

Deutsche Gesellschaft für Ultraschall in der Medizin e. V. (DEGUM). S2e-Leitlinie Fraktursonografie – Leitlinienreport. Version 1.0. 2021, verfügbar unter www.awmf.org/leitlinien/detail/ll/085-003.html. Zugriff am: [Datum].

Inhaltsverzeichnis

lmp	ressu	m	2			
Inha	altsver	zeichnis	3			
1	Geltungsbereich und Zweck					
	1.1	Begründung für die Auswahl des Leitlinienthemas	4			
	1.2	Zielorientierung der Leitlinie	4			
	1.3	Zielpopulation	4			
	1.4	Versorgungsbereich	4			
	1.5	Anwenderzielgruppe/Adressatinnen und Adressaten	4			
2	Zusa	mmensetzung der Leitliniengruppe: Beteiligung von Interessensgruppen	5			
3	Genauigkeit der Leitlinienentwicklung					
	3.1	Einführung	6			
	3.2	Suchstrategie	8			
	3.3	Suchergebnisse	9			
	3.4	Bewertungsmodus und -kriterien	. 10			
	3.5	SIGN-Bewertung von klinischen Studien, Meta-Analysen und systematischen Reviews	. 12			
	3.6	Empfehlungsgraduierung	. 16			
4	Exte	ne Begutachtung und Verabschiedung	. 16			
5	Reda	ktionelle Unabhängigkeit	. 16			
	5.1	Finanzierung der Leitlinie	. 16			
	5.2	Darlegung von Interessen und Umgang mit Interessenkonflikten	. 16			
6	Verb	reitung und Implementierung	. 16			
7	Gülti	gkeitsdauer und Aktualisierungsverfahren	. 17			
Anh	ang A	: Evidenztabellen mit Bewertung	. 18			
Anh	ang B	: Übersicht Interessenkonflikte	. 84			

1 Geltungsbereich und Zweck

1.1 Begründung für die Auswahl des Leitlinienthemas

Das Thema ist hoch relevant, da es insbesondere die potentielle Einsparmöglichkeit für ionisierenden Strahlen bei Frakturen betrifft.

Neben einer hohen Zahl von Veröffentlichungen sind in den letzten Jahren mehrere Metaanalysen zur Fraktursonografie international publiziert worden.

Die Publikation von definierten Algorithmen ermöglicht eine breite multidisziplinäre Anwendung. Allein für die am besten erforschte Anwendung, der distalen Unterarmfraktur bei Kindern, besteht ein hohes Anwendungspotential. Bei ca. 180.000 Verdachtsfällen auf eine Vorderarm Fraktur im Kindesalter pro Jahr in Deutschland könnten hierbei 288.000 Röntgenaufnahmen (80% von 180.000 x 2 Röntgenaufnahmen) jährlich in der Bundesrepublik eingespart werden und das bei einem sehr strahlensensiblen Patientengut. Durch eine konsequente Anwendung der Fraktur-Sonografie bei allen bisher bekannten Indikationen liegt das Potential zur Vermeidung von ionisierender Strahlung um ein Vielfaches höher.

Weiterhin ist die Methode mit den bisher vorhandenen Ultraschallgeräten sicher durchführbar. Die Anwendung der Ultraschalltechnik ist einfacher, sicherer und mit weniger personellem, apparativen und baulichen Aufwand durchführbar als die Röntgendiagnostik. Sie kann in jeder Klinik und Praxis, welche über ein Ultraschallgerät verfügt, ohne weitere Investitionen durchgeführt werden. Die Anwendung der Fraktursonografie ist allen mit Ultraschall vertrauten Ärztinnen und Ärzten nach kurzem Training möglich. Es ist daher bei entsprechendem Training eine weite und schnelle Verbreitung zu erwarten. Hierfür ist eine Leitlinie erforderlich, welche die wissenschaftliche Evidenz umfassend aufgearbeitet. Es ist zu erwarten, dass sich die Fraktursonografie bei bestimmten Indikationen als Standarddiagnostik etablieren wird.

Nach Meinung der Leitliniengruppe weist keine andere Methode in der Ultraschalldiagnostik ein so hohes Potential für die Einsparung von Röntgenbelastung, für die weite Verbreitung in der klinischen Medizin und für die Erschließung neuer Indikationen auf.

1.2 Zielorientierung der Leitlinie

Aufarbeitung und Zusammenfassung der klinischen Evidenz zur Frakturspaltsonographie, insbesondere im Vergleich zum konventionellen Röntgen, Entwicklung von Algorithmen, Etablierung von Standards für die regelhafte Anwendung der Fraktursonografie.

1.3 Zielpopulation

Patientinnen und Patienten mit Frakturen; Traumapatienten, schwerpunktmäßig im Kindesalter; indikationsabhängig auch bei Erwachsenen.

1.4 Versorgungsbereich

Diagnostik, allgemein - und spezialärztliche Versorgung: ambulant, stationär, teilstationär.

1.5 Anwenderzielgruppe/Adressatinnen und Adressaten

Chirurgie, Orthopädie und Unfallchirurgie, Kinderchirurgie, Radiologie,; Klinikärzte und niedergelassene Ärzte der o.g. Fachrichtungen und dient zur Information für Notfallmediziner und alle Ärzte, die Frakturen diagnostizieren und versorgen.

2 Zusammensetzung der Leitliniengruppe: Beteiligung von Interessensgruppen

Beteiligte Fachgesellschaften

Deutsche Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM)

Deutsche Gesellschaft für Orthopädie und Unfallchirurgie e.V. (DGOU)

Deutsche Gesellschaft für Kinderchirurgie e.V. (DGKCH)

Deutsche Röntgengesellschaft e.V. (DRG)

Deutsche Gesellschaft für Handchirurgie e.V. (DGH)

Deutsche Gesellschaft für Kinder- und Jugendmedizin e.V. (DGKJ)

Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie e.V. (DGOOC)

Gesellschaft für Pädiatrische Radiologie e.V. (GPR)

Deutsche Gesellschaft für Unfallchirurgie e.V. (DGU)

Mandatstragende/Teilnehmende der Fachgesellschaften/Organisationen

Mandatstragende	Fachgesellschaft/ Organisation	Zeitraum
PD Dr. Christian Fischer	DGOU, DGOOC, DGU	gesamter Zeitraum
Dr. Kay Grosser	DGKCH	gesamter Zeitraum
Dr. Christina Hauenstein	DRG	gesamter Zeitraum
Dr. Sebastian Kluge	DGH	gesamter Zeitraum
PD Dr. Jörg Detlev Moritz	GPR	gesamter Zeitraum
PD Dr. Ole Ackermann	DEGUM	gesamter Zeitraum
Dr. Daniel Berthold	GPR (Vertreter)	gesamter Zeitraum
PD Dr. Christian Tesch	DEGUM (Vertreter)	gesamter Zeitraum
Weitere Teilnehmende	Fachgesellschaft/Organisation	Zeitraum
Dr. med. Monika Nothacker	AWMF (methodische Beratende)	gesamter Zeitraum
UnivProf. Dr. Constantin von Kaisenberg	DEGUM (Bauftragter und AWMF zertifizierter LL Berater)	gesamter Zeitraum

Patientenvertreterinnen und Patientenvertreter wurden nicht beteilig, es wurde keine spezifische Selbsthilfeorganisation identifiziert. Es handelt sich um rein nicht-invasive und (im Gegensatz zum Röntgen) nebenwirkungsfreie diagnostische Maßnahmen, bei denen die Autor*innen von einer hohen Akzeptanz der Betroffenen ausgehen.

3 Genauigkeit der Leitlinienentwicklung

Im Auftrag der DEGUM erfolgte für die S2e-Leitlinie "Fraktursonografie" (AWMF 085-003) eine systematische Literaturrecherche, erstellt durch Dr. med. Vladimir Patchev, ExSciMed, März 2021.

Liste der Abkürzungen der Literaturrecherche

	Abkürzung	Ausschrift	
Α	AC	akromioklavikular (Gelenk)	
С	CC	korakoklavikular (Gelenk)	
	СТ	Computertomografie	
D	DLS	double line sign / Doppellinienzeichen (US)	
G	GCS	Glasgow Coma Scale	
M	MFK	Mittelfußknochen	
	MHK	Mittelhandknochen	
	MRT	Magnetresonanztomografie	
N	n.a.	non-applicable / nicht anwendbar	
	NLR	Negative likelihood ratio/negatives Wahrscheinlichkeitsverhältnis	
	NPV	mioklavikular (Gelenk) hkoklavikular (Gelenk) hputertomografie Die line sign / Doppellinienzeichen (US) sgow Coma Scale elfußknochen elhandknochen heltesonanztomografie -applicable / nicht anwendbar ative likelihood ratio/negatives Wahrscheinlichkeitsverhältnis ative predictive value / negativer Vorhersagewert räge Projektion s ratio / Chancenverhältnis res Sprunggelenk titive likelihood ratio / positives Wahrscheinlichkeitsverhältnis itt-of-care / bei Aufnahme o. vor Ort titive predictive value / positiver Vorhersagewert lity Assessment of Diagnostic Accuracy Studies lomized controlled trial /randomisierte kontrollierte Prüfung eiver Operating Characteristic (curve) /bGrenzwertoptimierungs(kurve) tgenaufnahme, Radiografie hoklavikular (Gelenk) scale / schwarz-weiß aschall heres Sprunggelenk al analogue scale / Visuelle Analogskala likation bezieht sich auf mehr als einen Inhaltspunkt und wurde	
0	ObP	Schräge Projektion	
	OR	odds ratio / Chancenverhältnis	
	OSG	oberes Sprunggelenk	
Р	PLR	Positive likelihood ratio / positives Wahrscheinlichkeitsverhältnis	
	POC	Point-of-care / bei Aufnahme o. vor Ort	
	PPV	Positive predictive value / positiver Vorhersagewert	
Q	QUADAS	Quality Assessment of Diagnostic Accuracy Studies	
R	RCT	randomized controlled trial /randomisierte kontrollierte Prüfung	
	ROC	Receiver Operating Characteristic (curve) /bGrenzwertoptimierungs(kurve)	
	Rö	Röntgenaufnahme, Radiografie	
S	SC	sternoklavikular (Gelenk)	
	s/w	grayscale / schwarz-weiß	
U	US	Ultraschall	
	USG	unteres Sprunggelenk	
V	VAS	visual analogue scale / Visuelle Analogskala	
	\$	Publikation bezieht sich auf mehr als einen Inhaltspunkt und wurde mehrmals bewertet	
	A	Population entspricht nicht der vorgegebenen Altersgruppe oder der anatomischen Zielregion	

3.1 Einführung

Die Recherche wurde in den elektronischen Literatur-Datenbanken *PubMed, Google Scholar* und *Cochrane Database of Systematic Reviews* durchgeführt. Zusätzlich wurden aus den Referenzlisten von Übersichtspublikationen einige relevante Quellen extrahiert, die durch den vorgegebenen Suchraster nicht erfasst wurden bzw. in den festgelegten Datenbanken nicht referiert werden.

Zu Beginn wurden folgende AWMF Leitlinien ausgewählt und im weiteren inhaltlich berücksichtigt:

• 006-040 proximale Humerusfraktur,

- 012-014 S1 Suprakondyläre Humerusfraktur beim Kind
- 012-015 S2e Distale Radiusfraktur
- 012-026 S2k Frakturen des distalen Unterschenkels im Kindesalter
- 064-019 S1 Trauma des muskuloskelettalen Systems im Kindes- und Jugendalter Bildgebende Diagnostik
- 006-062: S1 Unterarmschaftfrakturen im Kindesalter
- 006-131: S1 Tibia- und Unterschenkelschaftfraktur im Kindesalter

Die Suche umfasst Publikationen, die in der Zeit vom 01. Januar 2000 bis zum 01. März 2021 veröffentlicht wurden.

Nach abgestimmten Kriterien fokussierte sich die Suche auf Publikationen, die Ergebnisse von *a)* randomisierten kontrollierten klinischen Prüfungen, *b)* klinischen Beobachtungsstudien, *c)* Meta-Analysen und *d)* systematischen Reviews berichten. Leitlinien, Konsensus-Fachkonferenzen, Übersichtsartikel (Reviews), Fallberichte und Experten- meinungen wurden von der Suche ausgeschlossen.

Die Suchstrategie basiert auf 22 Inhaltspunkten (ferner im Text PICO-Fragen), die für die jeweilige medizinische Fragestellung die Dimensionen Population, Intervention, Comparison und Outcome definieren und bestimmte anatomische Strukturen und Altersgruppen umfassen. Ferner wurden zu jedem Inhaltspunkt der zu erarbeitenden Leitlinie Schlüsselwörter ausgewählt und nach zweifacher Durchsicht durch Mitglieder der Leitlinienarbeitsgruppe bestätigt. Eine detaillierte Beschreibung der Suchstrategie ist im Kapitel 3.2 Suchstrategie dargestellt.

Die primären Suchergebnisse wurden durch Sichtung der Zusammenfassungen gefiltert und irrelevante Treffer aus der weiteren Analyse ausgeschlossen. Dieser Prozess ist im Kapitel 3.3 Suchergebnisse abgebildet.

Die relevanten Artikel wurden, soweit verfügbar, als Volltext-Versionen gespeichert und einer detaillierten Analyse unterzogen. Bei drei (aus 182) Publikationen wurde auf die Beschaffung der Volltexte verzichtet, da diese nur in der Originalsprache (Ungarisch, Koreanisch, Persisch) verfügbar waren. In diesen Fällen wurde die Qualitätsbewertung anhand der Daten in der englisch-sprachigen Zusammenfassung durchgeführt.

Die Ergebnisse der Analyse zu den jeweiligen Inhaltspunkten wurden in tabellarischer Kompaktform dargestellt. Die Formvorlagen entsprechen den Vorgaben des Guidelines International Network in einer modifizierten deutschen Version der AWMF vom 20.7.2011. Im Die Evidenzbewertung erfolgte nach dem vom **S**cottish Intercollegiate **G**uidelines **N**etwork (SIGN)¹ vorgegebenen SIGN Grading System 1999-2012². Die Vorgehensweise wird in Kapitel 3.4 Bewertungsmodus und -kriterien in Details dargestellt.

Die Bewertungen nach den SIGN Kriterien umfassen alle Literaturquellen, die für die jeweilige PICO-Frage von Relevanz sind (d.h. inklusive Meta-Analysen, systematische Reviews und Beobachtungsstudien). Die Details der Bewertungen zu den jeweiligen Inhaltspunkten sind im Kapitel 3.5 SIGN-Bewertung von klinischen Studien, Meta-Analysen und systematischen Reviews geschildert.

Eine Evidenzbewertung nach den Vorgaben der internationalen Arbeitsgruppe **G**rading of **R**ecommendations **A**ssessment, **D**evelopment and **E**valuation (GRADE) wurde für RCT vorgesehen. Da die Recherche keine Studien dieser Art identifizieren konnte, wurde im vorliegenden Abschlussbericht auf diesen Bewertungsmodus verzichtet. Des Weiteren sollten die folgenden Argumente für diese Entscheidung hervorgehoben werden:

¹ SIGN 50: a guideline developer's handbook; revised edition 2019

² www.sign.ac.uk/media/1641/sign grading system 1999 2012.pdf

- keine der analysierten klinischen Studien enthielt eine unabhängige Kontrollpopulation; vielmehr diente die Untersuchung der Patientenpopulation durch eine alternative diagnostische Modalität als Auto-Vergleichskontrolle;
- in keiner der Studien erfolgte eine randomisierte Einteilung der Patientenpopulation zur Untersuchung durch die Index- (Sonografie) bzw. Referenz-Methode;
- in der Mehrheit der Studien wurden als Referenzstandard diagnostische Verfahren verwendet (z. B. konventionelle Radiografie), die keine 100-prozentige Sensitivität und Spezifität aufweisen.

Die zusammenfassende Bewertung (Kapitel **Error! Reference source not found. Error! Reference source not found.**) stellt eine kondensierte Auflistung der wichtigsten Erkenntnisse und Schlussfolgerungen zu den einzelnen PICO-Fragen dar. Diese kurzen Zusammenfassungen sind als Bullet-point-Statements formuliert und mit einem dreistufigen Schema zur Graduierung von Empfehlungen (A= Starke Empfehlung, B= Empfehlung, 0= Empfehlung offen) versehen³.

3.2 Suchstrategie

Die Suchstrategie wurde in Zusammenarbeit des Rechercheurs mit dem Auftraggeber etabliert. Auf der Basis der vom Auftraggeber vorgeschlagenen PICO-Fragenformulierungen und Keywords wurde zunächst ein allgemeiner Suchraster mit den folgenden Parametern erstellt:

	Suchbereich	Suchbegriff / Parameter		
	MeSH Term <i>OR</i> Title/Abstract	fracture		
AND	MeSH Term <i>OR</i> Title/Abstract	ultrasound <i>OR</i> ultrasonic <i>OR</i> sonograph* <i>OR</i> ultrasonograph*		
AND	Date-Publication	2000/01/01 – 2021/03/01		
AND	Language	English <i>OR</i> German <i>OR</i> French		
AND	Article type	clinical study OR clinical trial OR cbservational study OR meta analysis O systematic review		
NOT	Article type	case report <i>OR</i> review		

Die Anwendung des allgemeinen Rasters bei den Datenbanken *PubMed* und *Cochrane* ergab 351 Treffer. Die Suche in der Datenbank *Google Scholar* ergab 157 Literaturquellen, die sich

z.T. mit denjenigen in PubMed überlappten. Nach Bereinigung der Duplikate verblieben von der Google-Scholar-Suche 32 Treffer. Weitere 12 Quellen wurden durch die Durchsicht von Referenzlisten von Übersichtsartikeln identifiziert. Somit erhöhte sich die Gesamtzahl der Treffer auf 395.

Anschließend erfolgte eine Einschränkung der Suche durch Hinzufügung von Bezeichnungen der jeweiligen anatomischen Struktur von Interesse sowie von PICO-Fragen-spezifischen Keywords (s. Liste der zusätzlichen Suchbegriffe in *Texttabelle 1*).

	Allgemeines Raster				
AND	Title/Abstract	anatomische Struktur/Region <i>AND</i> PICO-spezifische Suchbegriffe			

Nach Bestätigung des Suchalgorithmus durch den Auftraggeber erfolgte ein inhaltliches Screening der Treffer durch Sichtung der Abstracts.

Publikationen, die nicht auf einer definierten anatomischen Region/Struktur beschränkt sind, wurden in dem Inhaltspunkt "Allgemein" zusammengefasst.

Einer Evidenzbewertung anhand der Volltexte wurde bei **182** Quellen (**146** klinische Studien und **36** Meta-Analysen und systematischen Reviews) durchgeführt. Die Verteilung der Quellen zu den

³ Entwicklung einer Methodik für die Ausarbeitung von Leitlinien für optimale medizinische Praxis. Empfehlung Rec(2001)13 des Europarates und Erläuterndes Memorandum

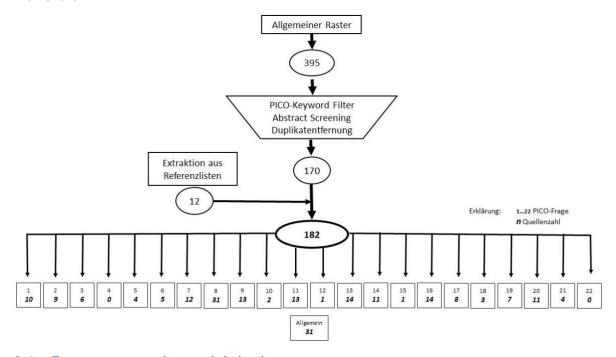
einzelnen Inhaltspunkten (PICO-Fragen) ist in der *Texttabelle 2* (s. Kapitel 3.3 Suchergebnisse) dargestellt.

Texttabelle 1: Erweiterter Suchalgorithmus

PICO	Region/Struktur	Suchbegriffe
1	Schädel	scull OR head
2	Clavicula	clavic* OR collar
3	AC-Gelenk	acromioclavicular OR AC-joint
4	SC-Gelenk	sternoclavicular OR SC-joint
5	Humerus	(humerus) AND (subcapital OR proximal)
6	Fettpolsterzeichen	elbow AND "fat pad"
7	Ellenbogen	elbow
8	Distaler Vorderarm	wrist OR forearm OR (distal AND forearm) OR radius OR ulna*
9	Mittelhand	hand OR metacarp*
10	Fibrocartilago palmaris	(palmar AND plate) OR (volar AND plate) OR fibrocartilage
11	Scaphoid	scaphoid OR navicular
12	Triquetrale Flake-Fraktur	triquetr* OR (triquetr* AND flake) OR (intercarpal) OR (radiocarpal)
13	Rippen	rib OR thorax
14	Sternum	sternum OR thorax
15	Femur Wulstfraktur	(femur OR thigh) AND torus
16	Tibiakopf	tibia* OR (tibia* AND head)
17	Mittelfuß	foot OR metatars* OR Jones
18	Toddler's Fraktur	toddler OR toddler's OR (distal AND tibia)
19	Stressfraktur	stress OR march NOT osteoporosis
20	Frakturdislokation	displacement OR dislocation OR reduction
21	Kallus	callus OR healing
22	Pseudarthrose	pseudoarthrosis OR nonunion OR non-union

3.3 Suchergebnisse

Quellencharakteristika


Texttabelle 2: Verteilung der Quellen zu einzelnen Inhaltspunkten⁴

PICO	Region/Struktur	Beobachtungsst udien	Meta-Analysen und systematische Reviews	Gesamt
1	Schädel	8	2	10
2	Clavicula	6	3	9
3	AC-Gelenk	3	3	6
4	SC-Gelenk	0	0	0
5	Humerus	4	0	4
6	Fettpolsterzeichen	5	0	5
7	Ellenbogen	10	2	12
8	Distaler Vorderarm	28	3	31

⁴ Die Gesamtzahl der Quellen ist höher als 182, da einzelne Quellen enthalten Information zu mehr als eine PICO-Frage und wurden im Bericht wiederholt bewertet

PICO	Region/Struktur	Beobachtungsst udien	Meta-Analysen und systematische Reviews	Gesamt
9	Mittelhand	11	2	13
10	Fibrocartilago palmaris	2	0	2
11	Scaphoid	8	5	13
12	Triquetrale Flake-Fraktur	0	1	1
13	Rippen	12	2	14
14	Sternum	9	2	11
15	Femur Wulstfraktur	1	0	1
16	Tibiakopf	11	3	14
17	Mittelfuß	8	0	8
18	Toddler's Fraktur	3	0	3
19	Stressfraktur	4	3	7
20	Frakturdislokation	11	0	11
21	Kallus	4	0	4
22	Pseudarthrose	0	0	0
0	ohne definierte Region	21	10	31

Flowchart

3.4 Bewertungsmodus und -kriterien

Beobachtungsstudien, Meta-Analysen und systematische Reviews wurden nach SIGN Kriterien bewertet und die Ergebnisse zu jeder PICO-Frage tabellarisch dargestellt (s. SIGN-Bewertung von klinischen Studien, Meta-Analysen und systematischen Reviews und Anhang A: Evidenztabellen mit Bewertung).

Bei der Einschätzung der Evidenzqualität wurden die Bias-Risiken beim Studiendesign und, bei vorhandenem Anlass, die adäquate Behandlung des Einflusses von Störfaktoren (Confounder) berücksichtigt. Das Vorgehen stützte sich so weit wie möglich auf den Kriterien, die bei der Bewertung der Evidenzqualität nach GRADE Anwendung finden (s. *Texttabelle 3*). Allerdings erlaubte der dominierende Typ der Studien (prospektive Beobachtung mit Querschnitt-Design bzw. willkürlichen

Stichproben und aufeinanderfolgender Untersuchung durch das Index- und Referenz-Verfahren) nur die teilweise Berücksichtigung von Qualitätskriterien (s. Stern-Markierungen in *Texttabelle 3*)

Texttabelle 3: Kriterien zur Bewertung der Evidenzqualität nach GRADE

Kriterion	Inhaltliche Aspekte		
Bias-Risiko beim Studiendesign	*keine Verblindung		
-	*unvollständige Berichterstattung (Protokollabweichungen, Probandenausfall) *selektive Outcome-Berichterstattung		
	• frühe Beendigung (weniger als 200 dichotome bzw. 500 kontinuierliche Events)		
	*nicht validierte Methoden zur Outcome-Erfassung (Surrogat-Endpunkte) *Rekrutierung-Bias (willkürliche Stichprobe)		
	Übertragung von Effekten bei Cross-over-Studiendesign		
Inkonsistenz	 große Streuung der Messergebnisse zwischen den Studien keine Überlappung der Konfidenzintervalle zwischen den Studien inkonsistente Signifikanzwerte (grenzwertige p-Werte) 		
Indirektheit			
munektheit	*unterschiedliche bzw. heterogene Studienpopulationen		
	*unterschiedliche Interventionen		
	*unterschiedliche klinische Endpunkte		
	• indirekte Vergleiche (z.B. zu historischen Daten oder Generalpopulation)		
Ungenauigkeit	weniger als 300 dichotome oder 400 kontinuierliche Events		
	grenzüberschreitende Konfidenzintervalle		
	*Nichterreichen der kalkulierten Stichprobenstärke (underpower)		
	*kleine Stichproben bzw. geringe Zahl von Zielevents (z.B. Frakturen)		
Publikation-Bias	*vorläufige Ergebnisse		
	Nichtveröffentlichung negativer Ergebnisse		
	Veröffentlichung in Periodika mit nicht überzeugender Reputation		

Die wichtigsten Inhalte und Schlussfolgerungen von Meta-Analysen wurden in Kurzform zusammengefasst. Seit einigen Jahren enthalten Meta-Analysen grundsätzlich Bewertungen der Qualität der eingeschlossenen Studien, die Inkonsistenzen und Bias-Risiken einschätzen. Sofern solche Angaben im Text vorhanden waren, wurden diese in die tabellarische Zusammenfassung übernommen; anderenfalls wurden die Publikationen bezüglich der Qualität der Methoden vom Rechercheur geprüft und mit einer entsprechenden SIGN Einstufung versehen.

Das letztere Vorgehen wurde auch bei der Bewertung von systematischen Reviews angewendet, die üblicherweise keine Qualitätsangaben enthalten.

Die Anforderungen für die Vergabe entsprechender Evidenzgrade bei einer Bewertung nach SIGN sind in *Texttabelle 4* aufgelistet.

Texttabelle 4: SIGN Evidenzgrade und Qualitätskriterien

Evidenzgrad	Anforderungen an die Publikation
1++	hochwertige Meta-Analysen, systematische Reviews von RCT oder RCT mit sehr geringem Verzerrungsrisiko
1+	gut durchgeführte Meta-Analysen, systematische Reviews von RCT oder RCT mit niedrigem Verzerrungsrisiko
1-	Meta-Analysen, systematische Reviews von RCT oder RCT mit hohem Verzerrungsrisiko

Evidenzgrad	Anforderungen an die Publikation
2++	 hochwertige systematische Reviews von Fall-Kontroll- oder Kohortenstudien hochwertige Fall-Kontroll- oder Kohortenstudien mit niedrigem Verzerrungsrisiko bzw. mäßigen Confounder-Einflüssen und hoher Wahrscheinlichkeit eines Kausalzusammenhangs
2+	gut durchgeführte Fall-Kontroll- oder Kohortenstudien mit niedrigem Verzerrungsrisiko bzw. mäßigen Confounder-Einflüssen und moderater Wahrscheinlichkeit eines Kausalzusammenhangs
2-	Fall-Kontroll- oder Kohortenstudien mit starken Confounder-Einflüssen bzw. Verzerrungsrisiken und signifikanter Wahrscheinlichkeit eines fehlenden Kausalzusammenhangs
3	nicht-analytische Studien (z.B. Fallberichte, Fallserien)
4	Expertenmeinungen, formale Konsenserklärungen

Wie bereits erwähnt, wurden zusätzlich zu den o.g. Kriterien bei der Bewertung von klinischen Studien design-abhängige Risikofaktoren berücksichtigt, die im GRADE System Verwendung finden.

Der Charakter einer Beobachtungsstudie erlaubt nach SIGN Kriterien keinen Evidenzgrad von 1. Es soll vermerkt werden, dass bei der Erstellung der Zusammenfassenden Bewertung (s. Kapitel Error! Reference source not found.) nur diejenigen Beobachtungsstudien als Informationsquellen berücksichtigt werden, die einen SIGN Evidenzgrad von 2++ und 2+ erzielt haben. Die Beobachtungsstudien mit einer Bewertung von 2- können zwar als Informationsquelle benutzt werden, jedoch erlauben ihre Verzerrungsrisiken und Schwächen keine eindeutigen Schlüsse, die in eine LL- Empfehlung übernommen werden sollten. Studien, die mit einer als n.a. bezeichneten Evidenzqualität weisen entweder eine marginale Kompatibilität mit der PICO Frage oder sind durch sehr große Schwächen belastet, um in der weiteren Analyse einbezogen zu werden.

Einige Meta-Analysen wurden unter Berücksichtigung aktueller Qualitätsvorschriften verfasst; entsprechend wurden die von den Autoren ermittelten Bias-Risiken und Evidenzqualität in die SIGN-Tabelle eingetragen. Die Verfasser von systematischen Reviews verwenden selten einheitliche Qualitätskriterien. Wenn Angaben dazu im Manuskript vorlagen, wurden sie in der SIGN-Evidenztabelle Tabelle (Spalte "Schwächen/Bias") erwähnt; jedoch erfolgte grundsätzlich eine Prüfung nach etablierten Kriterien (QUADAS) durch den Rechercheur vor einer Evidenzeinstufung nach SIGN Kriterien.

3.5 SIGN-Bewertung von klinischen Studien, Meta-Analysen und systematischen Reviews

Die Literatursuche identifizierte 146 Berichte zu klinischen Beobachtungsstudien und 36 Meta-Analysen bzw. systematische Reviews. Einige Publikationen adressierten Aspekte, die für mehr als einen Inhaltspunkt relevant sind; entsprechend wurde diese Studien wiederholt bewertet. In den Evidenztabellen sind solche Artikel durch das Symbol § in der Spalte

"Referenz" (Erstautor und Jahrgang) gekennzeichnet.

In einem Fall (PICO 8) wurde festgestellt, dass es sich um redundante Publikationen handelt, die auf identischen Populationen, Interventionen und Outcomes basieren. Entsprechend wurde nur eine von diesen Parallel-Publikationen evaluiert.

Bei 21 Studienberichten und 10 Übersichtspublikationen war eine Zuordnung zu den festgelegten anatomischen Regionen bzw. Inhaltspunkten nicht möglich. Diese Quellen wurden in einem separaten Cluster "PICO 00 Allgemein" gruppiert und nach SIGN Kriterien bewertet.

Einige Publikationen beziehen sich auf Studienpopulationen, die nicht den vorgegebenen Altersgrenzen oder der genauen anatomischen Zielregion entsprechen. Diese Quellen wurden in den

Evidenztabellen mit dem Symbol ▲ gekennzeichnet.

PICO 1 "Schädelfrakturen"

Die Analyse umfasst 8 Beobachtungsstudien, deren Populationen bis auf einer Ausnahme im Alter unter 18 Jahren waren. CT ist in allen Studien die Referenzintervention. Der primäre Endpunkt ist die diagnostische Leistungsfähigkeit der US-Untersuchung; nur bei einer Studie war die Notwendigkeit zusätzlicher CT Untersuchungen das primäre Outcome. Die zwei Meta-Analysen zeichnen sich durch hohe Qualität aus.

Die Ergebnisse sind im Anhang A PICO 01 dargestellt.

PICO 2 "Clavicula-Frakturen"

Es wurden 6 Beobachtungsstudien identifiziert. Bei der Ermittlung der diagnostischen Leistung von US wurden unterschiedliche (Radiografie, CT) Referenzstandards verwendet; bei 2 Studien gab es keine Vergleichsuntersuchung. Insgesamt sind die Publikationen von unterdurch-schnittlicher Qualität und durch viele design-bedingte Verzerrungsrisiken belastet.

Die Ergebnisse sind im Anhang A PICO 02 dargestellt.

PICO 3 "AC-Gelenksprengung"

Zu diesem Inhaltspunkt wurden 4 klinische Berichte von meist guter Qualität und 3 Meta- Analysen gefunden. Radiografie wurde als Referenzstandard verwendet. Neben der diagnostischen Leistung von US wurde auch die Korrelation zwischen dem sonografischen und dem radiologischen Befund untersucht. Die Meta-Analysen betreffen nur teilweise die PICO-Fragestellung.

Die Ergebnisse sind im Anhang A PICO 03 dargestellt.

PICO 4 "SC-Gelenksprengung"

In der Zeit zwischen 2000 und 2021 wurden keine klinischen Studien, Meta-Analysen und systematische Reviews veröffentlicht, die Aspekte der US-Diagnostik dieser Verletzung behandeln. Andererseits wurden mehr als 40 Übersichtsartikel und Fallberichte identifiziert, die den Vorgaben der Suchstrategie nicht genügten.

Der Anhang A PICO 4 enthält keine Daten und ist nur vollständigkeitshalber eingeschlossen.

PICO 5 "Proximale/subkapitale Humerus-Fraktur"

Zu diesem Inhaltspunkt wurden 4 Beobachtungsstudien identifiziert. Ihre Qualität wird durch niedrige Fallzahlen negativ beeinflusst; in einem Bericht weicht das Populationsalter von den Suchvorgaben ab.

Die Ergebnisse sind in Anhang A PICO 05 tabellarisch dargestellt.

PICO 6 "Fettpolster-Zeichen"

Bei der Formulierung dieser PICO-Frage wurde die diagnostische Index-Methode nicht auf Sonografie eingeschränkt. Entsprechend wurde der Endpunkt als "Aussagefähigkeit des Fettpolster-Zeichens beim Ausschluss einer Fraktur, unabhängig vom diagnostischen Vorgehen" formuliert. Es wurden 5 Beobachtungsstudien gefunden; die Qualität wurde als zufriedenstellend bewertet. Die Population einer Studie war älter als die Zielvorgabe.

Die Ergebnisse sind in Anhang A PICO 06 dargestellt.

PICO 7 "Ellenbogen-Frakturen"

Die Literatursuche ergab 10 klinische Studien und 2 Meta-Analysen. Als Referenzverfahren wurde in allen Fällen konventionelle Radiografie verwendet. Während die meisten Studien von akzeptabler Qualität sind, stellte man bei 2 Berichten erst bei der Volltextbearbeitung fest, dass es sich um Fallserien handelt, die durch das Suchraster nicht ausgeschlossen wurden. Auf Grund der sehr kleinen Fallzahl sowie verschiedener Design-Schwächen, wurden diese Quellen mit dem Evidenzgrad von Fallberichten bewertet.

Die tabellarische Bewertung findet sich in Anhang A PICO 07.

PICO 8 "Distale Vorderarm-Frakturen"

Zu diesem Inhaltspunkt wurden 14 klinische Studien und 3 Meta-Analysen identifiziert. Ihre Qualität ist sehr unterschiedlich; in allen Studien dient konventionelle Radiografie als Referenzverfahren. Sechs Studienpopulationen sind gemischt (d.h. Kinder und Erwachsene) oder bestehen nur aus Patienten älter als 18 Jahre. Eine Publikation stellte eine Fallserie vor, die aus einer größeren, jedoch nicht näher beschriebenen, Patientenpopulation extrahiert wurde.

Die Ergebnisse der Bewertung sind in Anhang A PICO 08 dargestellt.

PICO 9 "Mittelhand-Frakturen"

Die Suche zu diesem Inhaltspunkt ergab 11 Beobachtungsstudien und 2 Meta-Analysen. Die Studien sind von durchschnittlicher Qualität; als wichtigste Faktoren mit negativer Auswirkung können designassoziierte Verzerrungen, willkürliche Stichproben und heterogenes Qualifikationsniveau der Untersucher hervorgehoben werden.

Die Bewertung ist in Anhang A PICO 09 dargestellt.

PICO 10 "Fibrocartilago palmaris"

Zu diesem Inhaltspunkt wurden 2 klinische Studien identifiziert, die nur einen indirekten Bezug zu US-Frakturdiagnostik aufweisen. Eine der Studien hatte beträchtliche Design- Defizite; bei der anderen gab es keine Fraktur-Fälle in der untersuchten Population.

Die Ergebnisse sind in Anhang A PICO 10 dargestellt.

PICO 11 "Scaphoid-Frakturen"

Es wurden 8 klinische Studien und 5 Meta-Analysen identifiziert. Alle Quellen sind von guter Qualität, jedoch durch die Anwendung unterschiedlicher Referenz-Verfahren gekennzeichnet. Als häufige vorkommende Defizite sollen die fehlende Verblindung der Untersucher bezüglich der Ergebnisse der Referenzuntersuchung sowie die relativ geringen Fallzahlen erwähnt werden.

Die Bewertung findet sich in Anhang A PICO 11.

PICO 12 "Triquetrale Flake-Fraktur"

Zu diesem Inhaltspunkt wurde lediglich eine umfangreiche und gut durchgeführte Meta- Analyse gefunden. Daraus wird ersichtlich, dass in der Zeit seit 2000 keine klinische Studie die Anwendung von US zur Diagnostizierung von Triquetrum-Frakturen untersucht hat.

Die detaillierten Angaben sind in Anhang A PICO 12 dargestellt.

PICO 13 "Rippenfrakturen"

Vom Einsatz von US bei der Diagnose von Rippenfrakturen berichten 12 Beobachtungsstudien und 2 Meta-Analysen. Die klinischen Studien sind von durchschnittlicher Qualität, häufig mit deskriptivem (nicht-analytischem) Charakter und durch design-bedingte Bias belastet. Die Meta-Analysen sind von hoher Qualität und Ausführlichkeit.

Die Ergebnisse der Bewertung sind in Anhang A PICO 13 dargestellt.

PICO 14 "Sternumfrakturen"

Die Anwendung von US bei der Diagnose von Sternumfrakturen wird in 9 klinischen Studien und 2 Meta-Analysen erörtert. Alle Quellen sind von unterdurchschnittlicher Qualität, deskriptivem Charakter und durch beträchtliche Bias-Risiken belastet.

Die Bewertung ist in Anhang A PICO 14 dargestellt.

PICO 15 "Femur-Wulstfrakturen"

Die einzige identifizierte Publikation zu diesem Inhaltspunkt berichtet von Befunden bei erwachsenen

Patienten und entspricht nicht der PICO-Fragestellung.

Nichtsdestoweniger wurde sie bewertet und der Bericht in Anhang A PICO 15 dargestellt.

PICO 16 "Tibia-Frakturen"

Keine der gefundenen Quellen – 11 Beobachtungsstudien und 2 Meta-Analysen – bezieht sich auf die vorgegebene anatomische Region (Tibiakopf); die Altersgruppe (Kinder unter 12 Jahren) stimmte nur bei 2 Studien mit der Vorgabe überein. Alle Studien fokussierten sich auf die distale (malleolare) Tibia-Region. Die Studienqualität ist auf Grund des deskriptiven Charakters und verschiedener Bias-Risiken als unterdurchschnittlich einzuschätzen.

Obwohl die Suchergebnisse von der prädefinierten Fragestellung abweichen, wurden die Publikationen analysiert und in *Anhang A PICO 16* dargestellt.

PICO 17 "Mittelfuß-Frakturen"

Zu dieser Fragestellung wurden 8 klinische Beobachtungsstudien gefunden. Die Studienqualität darf als gut bezeichnet werden. Neben konventioneller Radiografie kommen vereinzelt auch CT und MRT als Referenzverfahren zum Einsatz. Weitere Faktoren mit negativer Auswirkung auf die Qualität sind die kleinen Frakturzahlen, sehr unterschiedliche Qualifikation der Untersucher und die manchmal beträchtliche zeitliche Verzögerung der US Untersuchung nach dem traumatischen Ereignis.

Die Resultate sind in Anhang A PICO 17 dargestellt.

PICO 18 "Toddler's Fraktur"

Es wurden 3 klinische Berichte gefunden, darunter eine Fallserie. Im Allgemeinen sind diese Quellen durch mehrere Bias-Risiken und niedrige Qualität charakterisiert.

Die Ergebnisse der Bewertung sind in Anhang A PICO 18 zusammengefasst.

PICO 19 "Stressfrakturen"

Die Literatursuche ergab 4 Publikationen zu klinischen Studien und 3 Meta-Analysen. Bis auf einzelnen Ausnahmen, sind die Studien von guter Qualität und lassen keine schwerwiegende Bias-Risiken erkennen.

Die tabellarische Bewertung ist in Anhang A PICO 19 dargestellt.

PICO 20 "Frakturdislokation"

Die Verwendung von US bei der Diagnostik von Frakturdislokationen wurde in 11 Studienberichten erörtert. In allen Studien wurde konventionelle Radiografie als Referenzstandard eingesetzt. Die meisten Arbeiten zeichneten sich durch kleine Fallzahlen dislozierter Frakturen aus; dadurch wurde in vielen Fällen die Evidenz-qualität negativ beeinflusst.

Die Ergebnisse der Bewertung sind in Anhang A PICO 20 dargestellt.

PICO 21 "Kallusdarstellung"

US Untersuchung der Kallusbildung wurde in 4 klinischen Berichten beschrieben. In allen Studien diente Radiografie als Referenzverfahren. Die Index-Methode US wurde in einigen der Studien in der Form von Farb-Doppler oder Puls-Wave-Doppler eingesetzt, um die Dynamik der Vaskularisation im Kallus zu verfolgen. Mit Ausnahme einer Studie ist die Qualität der Arbeiten durch schwerwiegende Bias-Risiken beeinflusst.

Die Ergebnisse der Bewertung sind in Anhang A PICO 21 dargestellt.

PICO 22 "Pseudoarthrose"

Zu diesem Inhaltspunkt ergab die Recherche keine relevanten Veröffentlichungen.

Der Anhang A PICO 22 enthält keine Daten und ist nur vollständigkeitshalber eingeschlossen.

PICO 00 "Allgemein"

Insgesamt 31 Publikationen zu US-Frakturdiagnostik (21 Beobachtungsstudien und 10 Meta-Analysen und systematische Reviews) konnten keiner der vorbestimmten anatomischen Regionen zugeordnet werden. Auf Grund ihres meist hohen Informationswertes wurden sie in die Sondergruppe "Allgemein" aufgenommen und nach SIGN Kriterien analysiert.

Mehr als die Hälfte dieser Quellen zeichnet sich durch überdurchschnittliche Qualität aus. Als Referenzstandard wurde fast ausschließlich Radiografie verwendet.

Die Ergebnisse der Bewertung dieser Arbeiten sind in Anhang A PICO 00 dargestellt.

3.6 Empfehlungsgraduierung

Die Empfehlungsformulierung und Vergabe von Empfehlungsgraden erfolgte unter Berücksichtigung der Information aus den Beobachtungsstudien, Meta-Analysen und systematischen Reviews mit einem SIGN- Evidenzniveau von 2+ und 2++ und der Nutzen-Schaden Abwägung, wie sie in der Leitliniengruppe diskutiert wurde (s.a. Hintergrundtexte). Die Vergabe von Empfehlungsgraden erfolgte dreistufig: A ("soll"), B ("sollte"), 0 ("kann") entsprechend des AWMF Regelwerks (https://www.awmf.org/leitlinien/awmf-regelwerk/II-entwicklung/awmf-regelwerk-03-leitlinienentwicklung.html).

Die abschließende Festlegung der Empfehlungen erfolgte in mehreren Online-Sitzungen. Obwohl nicht zwingend erforderlich bei einer S2e-Leitlinie, wurde eine formale Abstimmung für alle Empfehlungen durchgeführt. Ein Konsens war bei >75%, ein starker Konsens bei >95% erreicht. Für alle Empfehlungen wurde ein Konsens oder starker Konsens erzielt.

4 Externe Begutachtung und Verabschiedung

Die Begutachtung der Leitlinie erfolgte durch die AWMF und wurde von den Vorständen der beteiligten Fachgesellschaften verabschiedet.

5 Redaktionelle Unabhängigkeit

5.1 Finanzierung der Leitlinie

Die Leitlinie wurde von der DEGUM e.V. finanziert; eine Einflussnahme auf Diskussion, Ergebnis und Inhalte der Leitlinie fand weder direkt noch indirekt statt.

5.2 Darlegung von Interessen und Umgang mit Interessenkonflikten

Die Angaben zu den Interessen wurden mit dem AWMF-Formblatt von 2018 erhoben und in Abstimmung mit Frau Nothacker von der AWMF Leitlinie vom Koordinator in Absprache mit der Leitliniengruppe bewertet.

Als geringer Interessenkonflikt wurde die Mitwirkung bei Kursen, Autorenschaften oder Vorträge mit Finanzierung durch thematisch relevante Industrieunternehmen bewertet, als moderater Interessenkonflikt Mitarbeit in einem Wissenschaftlichen Beirat oder Gutachtertätigkeit sowie Aktienbesitz von thematisch relevanter Industrie.

Im Ergebnis wurden keine geringen Interessenkonflikte festgestellt und moderate Interessenkonflikte bei zwei von neun Autorinnen und Autoren. Aufgrund der schützenden Faktoren der unabhängigen Evidenzaufarbeitung und der interdisziplinären Leitliniengruppe sowie der Tatsache, dass mehr als 50% der Leitliniengruppe keine finanziellen Interessenkonflikte aufwiesen, wurde auf eine Enthaltung bei Abstimmungen verzichtet.

Eine Übersicht über die Erklärung von Interessen und das Ergebnis der Bewertung von Interessenkonflikten ist unter Anhang B: Übersicht Interessenkonflikte zu finden.

6 Verbreitung und Implementierung

Die Leitlinie wird auf der Website der AWMF publiziert (<u>www.awmf.org/leitlinien/detail/II/085-003.html</u>).

7 Gültigkeitsdauer und Aktualisierungsverfahren

Die Leitlinie ist von 12/2021 bis 12/2026 gültig.

Vorgesehen sind regelmäßige Aktualisierungen; bei dringendem Änderungsbedarf werden diese gesondert publiziert. Kommentare und Hinweise für den Aktualisierungsprozess sind ausdrücklich erwünscht und können an das Leitliniensekretariat gesendet werden.

Kontakt Leitliniensekretariat: DEGUM, Charlottenstr. 79/80 10117 Berlin Tel.: +49 (0)30 2060 8888-0 Fax: +49 (0)30 2060 8888-90; Internet: www.degum.de; E-Mail: geschaeftsstelle@degum.de

Anhang A: Evidenztabellen mit Bewertung

PICO 01 Schädel

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Choi et al_2020	Prospektiv Auto- Kontrolle	Alter < 4 J. Kopf- trauma GCS >14	87	Point of care US	СТ	US vs. CT	 Sensitivität 77% Spezifität 100% PPV 100 % NPV 96 % 	Willkürliche Stichprobe niedrige Qualifikation der US Untersucher (8 h) kleine pathologische Fallzahl (13/87)	2+
Debozorgi et al_2021	Prospektiv Auto- Kontrolle	Alter < 14 J Kopf- trauma	168	Point of care US	СТ	US vs. CT	 Sensitivität 82 % Spezifität 100 % PPV 100 % NPV 99 % Genauigkeit 99 % 	Willkürliche Stichprobe kleine pathologische Fallzahl (11/168)	2+
Masaeli et al_2019	Prospektiv Cross- section Auto- Kontrolle	Alter <18 J bis zu 24 h nach Kopf- trauma	538	Point of care US	СТ	US vs. CT bei Diagnose von Frakturen und Hämorrhagien • Sensitivität • Spezifität	 Sensitivität Fraktur 92 % Spezifität Fraktur 96 % Sensitivität bei Hämatomdiagnose nimmt mit dem Alter ab; Spezifität unverändert bei 97 % 	• Hohe Interobserver- Variabilität (0,36 bis 0,82)	2+
Parri et la	Prospektiv Cross- section Auto- Kontrolle	Alter<18 J Kopftrau- ma sichtbar GCS >14	55	Point of care US	СТ	US vs. CT	 Sensitivität 100 % Spezifität 95 % PPV 97 % NPV 100 % 	variable USQualifikationrelativ kleine Stichprobe	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Parri et al_2018	Prospektiv Auto- Kontrolle	Alter < 2 J. Kopf- trauma GCS 14-15	115	Point of care US	СТ	US vs. CT	 Sensitivität 91 % Spezifität 85 % PPV 95 % NPV 74 % 	willkürliche Stichprobe kein US bei Schädelbasis	2+
Rabiner et la 2013_b	Prospektiv Auto- Kontrolle	Alter <21 J Kopf- trauma	69	Point of care US	СТ	US vs. CT	 Sensitivität 88 % Spezifität 97 % PLR 27 NLR 0,13 	 willkürliche Stichprobe variable US Qualifikation kleine pathologische Fallzahl (8/69) 	2+
Riera & Chen_2012	Prospektiv Auto- Kontrolle	Alter <18 J Kopf- trauma	46	Point of care US	СТ	US vs. CT	 Sensitivität 82 % Spezifität 94 % PPV 82 % NPV 94 % 	Willkürliche Stichprobe z.T. keine Verblindung variable US Qualifikation kleine Stichprobe und patho logische Fallzahl (11/46)	2-
Trenchs et al_2009	Prospektiv Cross- section Auto- Kontrolle	Alter <1 J Leichtes Kopf- trauma -Lineare Fraktur durch Rö diagnosti- ziert	123	transfontanel- larer US mit Farb-Doppler	CT bei Bedarf	• Inzidenz zusätzlicher CT	• zusätzliche CT in 5,7 % der Fälle	Rö als erste Maßnahme Entschei- dung für US oder CT durch den aufnehmenden Arzt deskriptiv	2-

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
	Ovid,	7 Studien	Im Vergleich zu CT diagnostiziert US Schädelfrakturen bei Kindern mit	• Gute	2++
	Cochrane,	925 Fälle	• Sensitivität 91 %	Studienqualität	
	Embase,		• Spezifität 96 %	durch	
2020	Google Scholar		• PPV 88 %	QUADAS	
			• NPV 97 %	verifiziert	
et al_			Die Interpretation der US Befunde ist von der Qualifikation des Untersuchenden sehr	geringes	
1S 6			stark abhängig	Verzerrungsrisi	
lrid				ko	
Alexandridis				• 1 Studie betrifft	
ex				nicht nur	
Ā	D 1 1	(C) 1:		Schädelfraktur	2.
	Pubmed,	6 Studien	US diagnostiziert Schädelfrakturen mit	• Gute	2+
	Embase,	393 Fälle	• Sensitivität 91 %	Studienqualität	
50	Web of		• Spezifität 96 %	durch	
2020	Science		• PLR 14,4	QUADAS	
1 1			• NLR 0,14	verifiziert	
et			Die durchschnittliche Prävalenz von Schädelfrakturen bei den bewerteten Studien	• relativ niedrige	
Gordon et al			beträgt 31%.	Fallzahl	
ord			Ein positiver US Befund würde die Wahrscheinlichkeit einer Frakturdiagnose auf 87%		
Ð			erhöhen, während ein negativer US Befund die Wahrscheinlichkeit auf 6 % reduzieren.		

PICO 02 Clavicula

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Chien et al_2011	Prospektiv Autokont- rolle	Alter <17 Verdacht auf Clavi- culafraktur	58	Point-of-care US	Rö	US vs. Rö	 Sensitivität 90 % Spezifität 89 % PPV 95 % NPV 81 % PLR 8,33 NLR 0,11 Dauer US (76 Min.) sign. kürzer als bei Rö (107 Min.) 	 willkürliche Stichprobe minimale bzw. fehlende US Ausbildung keine Verblindung relativ kleine Fallzahl 	2-
Cross et al_2010	Prospektiv Autokont- rolle Post-hoc- Bewertung	Alter <18 Schulter- trauma	100	Point-of-care US	Rö	US vs. Rö • Sensitivität • Spezifität • PPV • NPV	 Sensitivität 95 % Spezifität 96 % PPV 95 % NPV 96 % 	 Willkürliche Stichprobe Verblindung erst bei Abschlußbew er-tung durch US Spezialist 97 % durch einen US- Untersucher 	2-
_2019Kayser et al_2003	Prospektiv Cross- section	Neugebo- rene Verdacht auf Clavi- culafraktur	15	Point-of-care US	kein	• US Befund	US Befund bestätigt klinischen Verdacht	rein deskriptivsehr kleine Fallzahl	2-
Kozaci et al_2019	Prospektiv Cross- section	Thorax- Trauma	81	Thorax US	CT	US vs. CT	Für Clavicula-Frakturen • Sensitivität 83 % • Spezifität 100 %	 Teil-Ergebnis nur 2 Clavicula- Frakturen in der Stichprobe 	2-

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Thorsmark et al_2017	Prospektiv Cross- section AutoKontr olle	Radiolo- gisch be- stätigte Clavicula- Fraktur Keine Al- tersgrenze	53	2x US Längen- messung inner halb von 3 Wo. nach Fraktur	kein	• Längenveränderung zw. 19. und 20 26. Tag	• Schlüsselbein-Länge bleibt stabil über 3 Wochen nach Fraktur	• keine validierte Untersuchung smethode • keine radiologische Kontrolle	2- oder n.a.
Wüstner et al_2005	Prospektiv Cross- section AutoKontr olle	Stumpfes Thorax- Trauma Keine Al- tersgrenze	100	US	Rö	• regionale Verteilung der Verlet- zungen	• nur 1 Fall von Clavicula-Fraktur	 Inklusion zu verschiedenen Zeitpunkten nach Trauma verschiedene US Geräte 	3 oder n.a.

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
Ackermann et al_2020	n.a.	n.a.	 Beim diagnostischen Vorgehen bez. Clavicula-Frakturen existieren keine einheitliche Standards gibt es keine eindeutige Indikationen für Rö-Kontrolle soll die US-Untersuchung in 2 Ebenen (ventral und kranial) erfolgen wird bei Unsicherheit zusätzliche Untersuchung in ventro-kranialer Ebene empfohlen wird bei technischen Schwierigkeiten eine fokussierte US-Untersuchung empfohlen soll eine US-Untersuchung bei unklarem radiologischen Befund vorgenommen werden 	• erfüllt nicht die QUADAS Qualitätskrite- rien	4
2020	Medline, Cochrane,	2 Publikationen 258 Fälle	Diagnostizierung von pädiatrischen Clavicula-Frakturen durch US • ist der radiologischen Diagnostik nicht unterlegen	• Analyse nach Cochrane Kri-	1+
Sprague_	Google Scholar, Clinical Key	(s. Cross et al, 2010 und Chien et al. 2011)	 ist mit kürzerer Dauer der Untersuchung assoziiert wird von der variablen Qualifikation der US-Untersucher beeinflusst 	terien zeigt keine schwer- wiegende Bias	

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
*	Medline,	17 Publikationen	Im Vergleich zu radiologischen Verfahren zeigt US	 Qualitätsbewert 	2+
9	Embase,	1 667 Fälle	höhere Sensitivität bei der Diagnostizierung von Frakturen im Thorax-Bereich (97	ung nach	
201	Scopus, Web		vs. 94%)	QUADAS	
al_2	of Science,		• Die Sensitivität bei der Detektion von Clavicula- und Sternum-Frakturen ist	 geringfügiges 	
et a	Cochrane, Pro		niedrigerals diese für Rippen-Frakturen (91 vs. 97 %)	Verzerrungsrisi	
	Quest		Die Sensitivität hängt von der Qualifikation des US-Untersuchers ab	ko	
ĭfa			(Radiologie-Facharzt 96% vs. Notfallmedizin-Facharzt 90%)	 Clavicula- 	
usefifard			· /	Analyse ist nur	
no /				Teilergebnis	

PICO 03 AC-Gelenk

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz -Niveau
Akyol et al_2016	Prospektiv Cross- section Auto- Kontrolle	Alter >15 Verdacht auf AC- Disloka- tion	103	Point-of-care US vor und nach Reposi- tion	Rö Diagnostik	Dislokation- Diagnose Sensitivität Spezifität Fraktur-Diagnose Sensitivität Spezifität	US diagnostiziert Dislokation mit 100% Sensitivität und Spezifität US schließt Frakturen mit 100% Sensitivität und 84% Spezifität aus US bestätigt erfolgreiche Reposition mit 100% Spezifität	 willkürliche Stichprobe US Training für 2,5 h zwei Typen von US-Geräten verwendet 	2+
Faruch Bilfeld et al_2017	Prospektiv Cross- section Auto- Kontrolle	Verdacht auf Schul- terdisloka- tion	47	Point-of-care US	-Rö -3T MRI als Referenz	Diagnose und Einstu- fung von Lä- sionen des Lig. coraco- claviculare	 US diagnostiziert Läsionen mit 89% Sensitivität und 90% Spezifität (PPV 92%, NPV 86%) US und MRT Befunde zeigen hohe Übereinstimmung (Korrelation 83%) Rö Befunde unterschätzen die Läsion in mehr als 50% der Fälle mit niedrigerer Korrelation zu US (69%) 	US Läsion-bewertung nach modifizierter Rockwell-Skala un-terschiedlich vom Rö/MRT Einschätzung nur 1 US-Untersucher relativ kleine Stichprobe	2+
Iovane et Fall 2004	Prospektiv Cross- section Auto- Kontrolle	Verdacht auf Schul- terdisloka- tion	18	Point-of-care US	Rö (bevor US)	• Übereinstimmung von Messungen der AC und CC Ligamente	• gute Übereinstimmung zw. Rö und US Messungen	deskriptivsehr kleineStichprobekeine Verblindung	2-

Ref	Design	Popula-	Stich-	Intervention	Komparator	Primär-	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz
		tion	probe			Endpunkt			-Niveau
et al_2020	Prospektiv Auto- Kontrolle	Verdacht auf Schul- terdisloka- tion	65	Point-of-care US mit dorsa- lem Zugang	3D-Rö	Leistungs- indizes US Identifizie- rung spezifi- scher Fraktur- arten Zeitaufwand	 US zeigt 100% Sensitivität und Spezifität bei Diagnose von Dislokation (PPV und NPV 100%) US diagnostiziert non-Hill- Sachs/non-Bankraft Fraktu- ren mit 92% Sensitivität und 	 willkürliche Stichprobe Missing data in Fällen ungleiche Qualifikation 	2+
Secko							100% Spezifität • US Diagnose in 18 Sek.		

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
Krill et al_2018	Medline, Ovid, Cochrane	2 Studien 191 Fälle	Leistungsindizes von körperlichen Untersuchungsmethoden zur Diagnose von AC Gelenkpathologie • Paxino's-Zeichen und O'Brien-Test zeigen bei aufeinanderfolgender Anwendung Spezifität von 96% und (die höhere) PLR von 2,71 • gleichzeitige Anwendung von Paxino's-Zeichen und Hawkins-Kennedy Test zeigen Sensitivität von 94% und (niedrigere) NLR von 0,35	• betrifft nicht die Fragestel- lung "US Diag- nostik"	n.a.
Pogorzelski et al_2017	Medline, Cochrane Embase	,17 Studien +660 Fälle	Standarduntersuchung zur Diagnostik von AC Gelenkpathologie Es kann keine bevorzugte Methode empfohlen werden Die Beurteilung der vertikalen Instabilität des Schlüsselbeins ist weitgehend reproduzierbar, während diese der horizontalen Instabilität weist hohe Inter-Observer-Variabilität auf Radiografie ist wegen ihrer Unabhängigkeit von der Qualifikation des Untersuchenden obligatorisch für den Ausschluss von Frakturen Es gibt keine einheitliche Meinung, ob zusätzliche Untersuchungen die radiologischen Ergebnisse verbessern können	 keine Bewertung der Studienqualität keine Meta-Analyse 	2+

© DEGUM 2021 25

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
	Medline, Embase,	24 Studien	US Diagnostik bei Schultergelenk-Verletzungen	• Qualität-	2+
	Web of Science,		• Sehr gute Leistung bei der Diagnose partieller und kompletter Risse der	Bewertung	oder
	Scopus		Rotatorenmanchette	nach QUADAS	n.a.
2020			• ungenügende Evidenz bei der Diagnostik von Labrum-Schädigungen	• geringes Bias-Risiko	
20				• keine direkte	
al				Beziehung zur	
t et				Fraktur-Frage-	
Га				stellung	

PICO 05 Humerus

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	1	Primär- Endpunkt	Wichtigste Ergebnisse		Evidenz -Niveau
Ackermann et al_2010_b	Prospektiv Cross- section Auto- Kontrolle		33	Point-of-care US in 4 Pro- jektionen	Rö	 Sensitivität Spezifität Methodenqualität-Score Schmerzhaftigkeit 	 US Sensitivität 94% US Spezifität 100% Qualitätscore US höher in 16 Fällen (vs. 5 bei Rö) übereinstimmende Therapie-Empfehlung bei US und 	Bewertungs- modus nicht validiert relativ kleine Stichprobe recruitment bias	2-
Ackermann et al_2013_a	Prospektiv Cross-section Auto- Kontrolle		30	Point-of-care US in 4 Pro- jektionen	Rö	maximale Achsabweichung Sicherheit der Messung	 größere Dislokation häufiger durch US bestimmt Sicherheit der Messung höher bei US 	• Sicherheitsbew ertungsmodus nicht validiert • relativ kleine Stichprobe•	2-
Ackermann et al_2013_b	Retrospekt. Modellva- lidierung	Fachärzte für Radiologie und Unfallchirurg ie		Modellanwendur g an Rö- Aufnahmen	keine	Übereinstimmun g zw. Modellberechnun g und Interpretation der Aufnahme	Rö Aufnahmen erlauben keine korrekte Beurteilung von Rotation und Kippung des proximalen Humerus Suche nach Alternativen zu Rö empfohlen	keine Untersuchung anpathologische n Beispielen	2- oder n.a.
Rutten et al_2006 ▲		Alter >21 Persistie- render Schmerz 2-300 Tage nach Trauma	57	US	Rö (bevor US) bei klinischem Frakturverdacht +MRT (bei diskordanten Rö-US- Befunden)	Validierung des "Doppellinienzei chen" (DLS) als US Merkmal okkulter Fraktur	 DLS ist vorhanden in 93% der Frakturen und, somit, häufiger als periostale Erhebungen, Diskontinuität und step-off-Deformationen Hochauflösung-US ist eine zuverlässige Alternative zu CT, MRT und Arthroskopie 	 missing Rö Daten für 30% der Fälle post-hoc- Vergleiche ohne Verblindung deskriptiv 	2-

Meta-Analysen und Systematische Reviews

_

PICO 06 Fat Pad Zeichen

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz -Niveau
Al-Aubaidi & Torfing_2012	Prospektiv Cross- section Auto- Kontrolle	Alter 6-15 Ellenbogen trauma mit Fat pad Rö Zeichen	26	Rö	MRT	• Übereinstimmung zw. Fat pad Zeichen und Frakturbefund	 Fat pad im Rö Bild ist kein sicheres Zeichen okkulter Fraktur MRT Befunde haben keinen Einfluss auf Therapie vorgehen 	kleine Fallzahl Alterseinschränkung	2-
Blumberg et al_2011	Prospektiv Cross- section	Alter 1-18 Ellenbogen trauma	197	Rö	kein	• Assoziation zw. normalem Anterior Fat Pad-Befund und fehlender Fraktur	• Normales Anterior Fat Pad Zeichen schließt eine Frak- tur mit 96% Sensitivität aus (NPV 98%)	• missing data in 15% der Fälle	2++
Burnier et al_2016	Prospektiv Cross- section Auto- Kontrolle	Alter <15 Ellenbogen trauma	34	US	Rö bei Auf- nahme und nach 15 Tagen	Diagnose okkulter Fraktur durch US Behandlungs kosten	• US Fat Pad Zeichen diagnostiziert okkulte Frakturen bei unauffälligem Rö Bild • Fat Pad Zeichen identifiziert Fraktur mit 100% Sensitivität • Lipohämarthrose indiziert Fraktur mit 92% Sensitivität • US Anwendung führt zu Kosteneinsparung von 29 €	• nur 1 US Untersucher • US Untersuchung zeitversetzt • variables Interoserver- Agreement bei Rö Bewertung • kleine Stichprobe	2+
Eckert et al_2014	Prospektiv Cross- section Auto- Kontrolle	Alter <14 Verdacht auf Ellen- bogen- Fraktur	79	Point-of-care US	Rö	Diagnosti- sche Genauig- keit von US Dorsal Fat Pad Zeichen	 Sensitivität 97 (92)% Spezifität 90 (93)% PPV 90 (92)% NPV 97 (93)% PLR 10 (12,6) NLR 0,03 (0,09) Diagnose korrekt 94 (92)% Diagnose falsch 6 (8)% 	Parameter- Differenzen durch Zweit- bewertung US Befund beeinflusst durch klini- sches Bild	2++

	-Niveau
	Tillicau
Posterior Fat Pad Zeichen d/oder Lipohämarthrose cht ausgeschlossen, jedoch ten (in nur 17% der Fälle) Negativer US Befund unstützt sofortige Reposition • hochqualifizierte Untersucher • kein Vergleich (erfolgreiche Reposition dient als Beweis)	2-
d/o chi lte Ne	oder Lipohämarthrose t ausgeschlossen, jedoch n (in nur 17% der Fälle) gativer US Befund un- Untersucher • kein Vergleich (erfolgreiche Reposition dient als

PICO 07 Ellenbogen

Klinische Studien

Ref	Design	Popula-	Stich-	Intervention	Komparator	Primär-	Wichtigste Ergebnisse	Schwächen/	Evidenz-
		tion	probe			Endpunkt		Bias	Niveau
Avci et al_2016▲	Prospektiv Cross- section Auto- Kontrolle	Alter 5-65 (50% <18) Ellenbogen trauma	49	Point-of-care US	Rö CT (Referenz)	 Fraktur- Detektion und *Diagnose epiphysealer Involvierung 	US Indizes vs. CT • Sensitivität 97/*100 % • Spezifität 88/*97 % • PPV 94/*92 % • NPV 93/*100 % US und CT sind Rö überlegen	 sehr undeutliche sprachliche Fassung kurzes US Training relativ kleine Stichprobe 	2+
Burnier et al_2016 %	Prospektiv Cross- section Auto-Kont- rolle	Alter <15 Ellenbogen trauma	34	US	Rö bei Auf- nahme und nach 15 Tagen	 Diagnose okkulter Frak- tur durch US Behandlungs kosten 	 US Fat Pad Zeichen diagnostiziert okkulte Frakturen bei unauffälligem Rö Bild Fat Pad Zeichen identifiziert Fraktur mit 100% Sensitivität Lipohämarthrose indiziert Fraktur mit 92% Sensitivität US Anwendung führt zu Kosteneinsparung von 29 € 	• nur 1 US Untersucher • US Untersuchun g zeitversetzt • variables Interobserver- Agreement bei Rö Bewertung • kleine Stichprobe	2+
Eckert et al_2013_a	Prospektiv Cross- section Auto- Kontrolle	Alter 1-13 Ellenbogen trauma	67	Point-of-care US (7 Projek- tionen)	Rö (2 Ebenen)	• Fraktur- Detektion	 Sensitivität 98 % Spezifität 95 % PPV 98 % NPV 95 % Negativer US Befund macht Rö überflüssig Fat Pad Zeichen ist sicheres Frakturmerkmal 		2++

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Eckert et al_2013_b	Prospektiv Cross- section Auto- Kontrolle	Alter 1-13 Ellenbogen trauma	106	Point-of-care US (7 Projek- tionen)	Rö (2 Ebenen)	• Fraktur- Detektion • Verschie- bung-Einstu- fung	 Sensitivität 100 % Spezifität 94 % PPV 95 % NPV 100 % Übereinstimmende Einstu- fung von Verschiebungen bei US und Rö 	keine Zweitvalidierung US Untersucher mit sehr hoher Qualifikation	2++
Pistor & Graffstädt_2003	Prospektiv nach retro- spektiver Lernphase Cross- section	Alter ??? Ellenbogen trauma	25	US	Rö	Eignung eines modifizier ten Diagnoseverfahrens	 Die Anwendung von zusätzlichen dorsalen radialen und ulnaren Sektionen verbessert die US Diagnostik suprakondilärer Frakturen Sensitivität 80% Spezifität 50% PPV 71% NPV 62% 	 keine demographischen Angaben deskriptiv kleine Fallzahl sehr kleine Untergruppen 	2-
Rabiner et al_2013_a	Prospektiv Cross- section Auto- Kontrolle	Alter <21 Ellenbogen trauma	130	Point-of-care US	Rö	• Fraktur- Detektion • Interobser- ver-Agree- ment zw. 26 Untersuchern	 Sensitivität 98% Spezifität 70% PLR 3,3 NLR 0,03 US Anwendung würde Rö in 48% der Fälle ersparen, wobei 1 Fehldiagnose zustande käme Agreementkoeffizient 0,77 	 Training für 1 Stunde Fat Pad oder Lipohämarthr ose als Referenzmerk male gesetzt willkürliche Stichprobe 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Tokarski et al_2018	Prospektiv Cross- section Auto- Kontrolle	Alter <21 Ellenbogen trauma	100	Point-of-care US	Rö	Fraktur- Detektion Notwendig- keit von Rö- Bestätigung Untersuch- ungsdauer	 Sensitivität 88% Spezifität 74% PPV 71% NPV 90% PLR 3,4 NLR 0,16 Rö-Notwendigkeit um 23% reduziert US-Diagnose dauert 3 Min Rö-Diagnose – 60 Min 	 Training für 1 Stunde Frakturdiagnose nur anhand Posterior Fat Pad u/o Lipohämarthrose Präsenz Differenzen zw. Expertenund Anfänger-Ergebnisse um 10-15% 	2+
Vocke-Hell & Schmid_2001	Prospektiv Fallserie	Alter 4-9 Fraktur des lateralen Humerus- Kondylus	6	US	Rö (vor US) Rö follow-up	Diagnose von Gelenk- knorpelläsion	 Gelenkknorpel-Läsion in 2 Rö-negativen Fällen diagnostiziert US eignet sich als Untersuchungsmodalität bei nicht-ossifizierten Regionen 	 sehr kleine Stichprobe keine Verblindung deskriptiv 	3
Zhang & Chen_2008	Prospektiv Fallserie	Alter 2-9 Fraktur des lateralen Humerus- Kondylus	9	US	Rö (vor US) Rö follow-up	Diagnose von Gelenk- knorpelläsion	 Gelenkknorpel-Läsion in 6 Rö- unsicheren Fällen diagnostiziert US eignet sich für die Diagnostizierung intraartikulärer Läsionen bei nicht-dislozierten Kondylusfrakturen 	• sehr kleine Stichprobe • deskriptiv • keine Ver blindung	3

Ref	Design	Popula-	Stich-	Intervention	Komparator	Primär-	Wichtigste Ergebnisse	Schwächen/	Evidenz-
		tion	probe			Endpunkt		Bias	Niveau
Zuazo et al_2008	Prospektiv Cross- section Auto- Kontrolle	Alter 5-15 Ellenbo- gentrau- ma mit Erguss, aber ne- gativem Rö- Bild	14	US	Rö (vor US) MRT (post- hoc-Standard	• Assoziation von Gelenkerguss mit kortikaler Läsion	-Lipohämarthrose ist meist mit okkulter kortikaler Läsion assoziiert • Sensitivität 88% • Spezifität 100% • PPV 100% • NPV 86% -Einfache Hämarthrose ist nur in Einzelfällen von kortikaler Läsion begleitet -Extraartikuläre und trabekuläre Frakturen sind durch US nicht erfassbar	 kleine Fallzahl US zeitlich verzögert Verblindung nur bei MRT 	2-

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
	Pubmed, EMBASE	10 Studien	Die durchschnittliche Leistungsfähigkeit von US Diagnostik bei pädiatrischen	• Qualitätsbe-	2+
		519 Fälle	Ellenbogen- Frakturen beträgt	wertung nach	
			• Sensitivität 96%	QUADAS-2	
			• Spezifität 89%	• Meta-Regres-	
			• Fläche unter der ROC Kurve 0,97	sionsanalyse	
_			• Falsch-negative Aussagenrate 3,7%	mehrerer Stör-	
2019			Wichtigster Störfaktor ist die Qualifikation des US Untersuchers	variablen	
			Die Auswirkung des Störfaktors macht sich durch Beeinflussung der Sensitivität	• Methoden-	
Yun			bemerkbar Keine Daten zu Salter-Harris-Frakturen	Differenzen	
1				können verzer-	
ee &				rende Effekte	
Le				verursachen	

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Tsou et al_2020	Pubmed, EMBASE, Web of Science	32 Studien 2 994 Fälle (davon 12 zu Ellenbogenfrak- turen)	Die durchschnittliche Leistungsfähigkeit von US Diagnostik bei pädiatrischen Ellenbogen- Frakturen beträgt • Sensitivität 95% • Spezifität 87% • Fläche unter der ROC Kurve 0,9 • PLR 7,10 • NLR 0,06 Die diagnostische Genauigkeit von US bei Ellenbogen-Frakturen ist geringer als bei der Untersuchung von Armfrakturen Die Rolle des subjektiven Faktors (Qualifikation) wird unterstrichen Die Bedeutung zusätzlicher nicht-messbarer Störvariablen kann nicht ausgeschlossen werden	Qualitätsbewertung nach QUADAS-2 Meta-Regressionsanalyse von Störfaktoren signifikante Publikationund Selektion-Bias-Risiken häufige Anwendung indirekter Diagnosekriterien (Fat Pad, Lipohäm arthrose)	2+

PICO 08 Vorderarm

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Ackermann et Ackermann et al_2009 al_2010_a	Prospektiv Cross- section Auto- Kontrolle	Alter 0-12 Trauma- anamnese Unterarm- schmerz	93	Point-of-care US	Rö	• US diagnos- tische Leist- ung	 Sensitivität 94% Spezifität 99% Differenz der axialen Abweichung vs. Rö – Radius 1,8⁰, Ulna 0,7⁰ 	Eliminierung von 0-Werten bei Berechnung der Abweichung Untersucher mit ungleicher Qualifikation	2+
Ackermann et al_2010_a	Prospektiv Cross- section Auto- Kontrolle	Alter 0-12 Trauma- anamnese Unterarm- schmerz	93	Point-of-care US	Rö	• US diagnostische Leistung	• identisch mit Ackermann et al_2009		n.a. redundant
Ackermann et al_2019	Prospektiv Cross- section	Alter 0-12 Vorderarm Frakturver- dacht	498	Diagnostik nach Wrist- SAFE-Algo- rithmus (US in 6 Projektionen	Rö-Überprü- fung unklarer Befunde	 Zuverlässig- keit des Algo- rithmus Aussagekraft klinischer Prä- diktoren Radiografie- Vermeidung Training- Anforderung 	 Wrist-SAFE ermöglicht korrekte Diagnose (Fehlerquote 3-6%) Schmerz (spontan und palpatorisch) und Schwellung haben sign. höhere Aussagefähigkeit Rö wurde in 81% der Fälle vermieden Sicherheitsniveau von 98% wird nach 50 Untersuchungen erreicht diagnostischer Zeitaufwand <5 Min in 89% der Fälle 	• Follow-up durch Telefon- interview	2++

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Ahmed et al_2018	Prospektiv Cross- section Auto- Kontrolle	Alter 1-17 Fraktur- Verdacht	42	Point-of-care US	Rö	US diagnostische Leistung Zeit bis Untersuchung	 Sensitivität 93% Spezifität 92% PPV 97% NPV 85% PLR 11,6 NLR 0,07 US nach 30 Min, Rö in 2 h 	 willkürliche Stichprobe Rö-Zeit aus retrospektiver Kohorte Relativ kleine Fallzahl US Training für 1 h 	2-
Al-Allaf & Al- Dubouni_2008	Prospektiv Cross- section Auto- Kontrolle	Alter 1-17 Fraktur- Verdacht	100	Point-of-care US	Rö	US Befund nach Fraktur- typ	 Subperiostales Hämatom und Reverberation-Echo in allen Frakturtypen Kortikale Läsion in 100% der Torus- und 36% der Grünzweig-Frakturen Axiale Abweichung in 100% der Grünzweig- und 46% der Torus-Frakturen 	deskriptiv kein Angaben zum Referenzvergleich	2-
Chaar-Alvarez et al_2011	Prospektiv Cross- section Auto- Kontrolle	Alter 1-17 Fraktur oh- ne Axisab- weichung	101	Point-of-care US in 4 Pro- jektionen	Rö	US diagnostische Leistung Schmerzempfindung	 Sensitivität 96% Spezifität 93% PPV 92% NPV 96% diagnost. Genauigkeit 94% Schmerzintensität sign. geringer bei US 	 Analgesie 30 Min vor US- Untersuchung Richtigkeit durch neutra- len Experten (nicht durch Referenzmeth- ode) ermittelt 	2+
Chen et al_2007	Prospektiv Cross- section Auto- Kontrolle	Alter 2-21	68	Point-of-care US in 4 Pro- jektionen	Rö	 US diagnostische Leistung Erfolgsrate von US Reposition 	 Sensitivität 97% Spezifität 100% Erfolgsrate 92% mehrere Salter-Harris- Frakturen 	willkürliche Stichprobe 1 US Untersucher keine Referenzmethode für Erfolgsrate	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Dubrovsky et al_2015	Prospektiv Cross- section	Alter <18 Reposition (keine kom binierte, Monteggia o. Galeazzi Frakturen)	100	Point-of-care- Reposition un- ter US Kont- rolle	Durchleuch- tung (Fluoro- skopie)	• Erkennung inkorrekter Reposition	 Sensitivität 50% Spezifität 89% PPV 29% NPV 95% Übereinstimmung der Untersucherbeurteilung 98% 	• willkürliche Stichprobe • US Training für 1 Stunde • sehr einge- schränkte Ein- schlußkriterien • 30% der In- terventionen durch 1 Exper- ten durchge- führt	2+ oder n.a.
Eckert et al_2012_a	Prospektiv Cross- section Auto-Kont- rolle	Alter 2-14 Verdacht auf distale Vorderarm fraktur	115	Point-of-care US (6 Projek- tionen)	Rö (2 Ebenen)	US diagnostische Leistung axiale Radiusabweichung Differenz in der Sagittalebene	 Sensitivität 95% Spezifität 98% PPV 96% NPV 97% Achsabweichungsdifferenz 1,70 	• ungenaue Rö-Aufnah- men verzerren Bewertung der axialen Ab- weichung	2++
Eckert et al_2012_b	Prospektiv Cross- section Auto- Kontrolle	Alter 1-14 Verdacht auf meta- physäre Vorderarm -Fraktur	76	Point-of-care US (6 Projek- tionen)	Rö (2 Ebenen)	US diagnostisch e Leistung Achsabweich ungdifferenz dislozierter Frakturen	Achsabweichungsdifferenz	Bestimmung der Achsab- weichungsdif- ferenz in nur 9 Fällen	2++

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Epema et al_2019	Prospektiv Cross- section Auto- Kontrolle	Alter 0-14 Verdacht auf distale Vorderarm fraktur	100	Point-of-care US	Rö	US diagnostische Leistung Schmerzempfindung	 Sensitivität 95% Spezifität 86% PPV 92% NPV 91% PLR 6,86 NLR 0,05 diagnost. Genauigkeit 92% Schmerzbewertung sign. niedriger bei US 	variable US Erfahrung 3 verschiedene (altersabhängige) Skalen für Algesie Vergleich nichtparametrischer Daten mit t-Test willkürliche Stichprobe	2+
Esmailian et al_2013 ▲	Prospektiv Cross- section Auto- Kontrolle	Alter 22- 73 Geschlos- sene Repo- sition dis- taler Radi- usfraktur	154	US Kontrolle	Rö Kontrolle	US Leistung bei Bestäti- gung korrekter Reposition Interobser- ver Agreement	 Sensitivität 99% Spezifität 100% PPV 100% NPV 89% Kappa-Koeffizient 0,94 	1 Operateur keine Angaben über Zahl der US Untersucher	2+
Galletebeitia I Laka et al_2019 a	Prospektiv Cross- section Auto- Kontrolle	Alter <15 Verdacht auf distale Vorderarm fraktur	115	Point-of-care US	Rö	• US diagnos- tische Leis- tung	 Sensitivität 94% Spezifität 97% PPV 93% NPV 98% 	willkürliche Stichprobe keine Inter- observer-Ag- reement-Be- wertung	2+
Herren et al_2015	Prospektiv Cross- section Auto- Kontrolle	Alter 4-11 Verdacht auf distale Vorderarm fraktur	201	Point-of-care US (6 Projek- tionen)	Rö	 US diagnostische Leistung Achsabweichungsdifferenz (nur bei OP-Fällen) 	 Sensitivität 99,5 % Spezifität 99,5 % Achsabweichungsdifferenz 0,20 	 kurzes Training, variable Qualifikation inkomplete Verblindung 	2++

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Javadzadeh et al_2013▲	Prospektiv Cross- section Auto- Kontrolle	Alter 18- 74 Vorderarm trauma	260	Point-of-care US	Wasserbad US Rö (Referenz)	Vergleich US diagnostischer Leistungsindizes (POCUS vs. Wasserbad) bei Vorderarm Frakturen	 Sensitivität 97 % Spezifität 100 % PPV 100 % NPV 94 % PLR 5,1 NLR 0,03 Genauigkeit 92 vs 95 % Die Wasserbad-Untersuch- ung zeigt durchweg sign. bessere Ergebnisse 	• kleine Teil- population mit Vorderarm- Frakturen • keine Ran- domisierung der Reihenfolge der US-Anwendung • keine Verblindung	2- oder n.a.
Ko et al_2017	Prospektiv Cross- section Auto- Kontrolle	Alter 2-15 Trauma des dista- len Vorder arms	51	Point-of-care US	Rö (3 Ebenen)	• US diagnos- tische Leist- ung	 Sensitivität 89 vs 94 % Spezifität 94 vs 96 % PPV 93 vs 95 % NPV 90 vs 96 % PLR 15,6 vs 21,8 NLR 0,12 vs 0,06 	US- und Rö- Befund durch denselben Un- tersucher (keine Verblindung) relativ kleine Stichprobe	2-
Kozaci et al_2015_a▲	Prospektiv Cross- section Auto-Kont- rolle	Alter 5-55 Verdacht distale Ra- dius-Frak- tur	83 (60<18 Jahre)	Point-of-care US	Rö	• US diagnostische Leistung bei a) linearen, b) Wulst- Frakturen und c) Fissuren	• Spezifität <i>a</i>) 93 <i>b</i>) 98 <i>c</i>)100 • PRV <i>a</i>) 87 <i>b</i>) 93	Untersucher mit 1 Stunde US oder Rö- Training sehr kleine Untergruppen	2-

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Lau et al_2017▲	Prospektiv Kontrolliert	Alter >18 Distale Radiusfraktur Gesunde Kontrollen	23 Fraktur 20 gesund	Tragbares US- Smartphone- Gerät	Rö	US diagnostische Leistung Erkennungsrate korrekter Reposition Interobserver Agreement	Frakturdiagnose • Sensitivität 100 % • Spezifität 90-95 % Reposition korrekt • Sensitivität 76-93 % • Spezifität 93-94 % Agreement κ 0,82-0,86	 Post-hoc-US und Rö-Bild- Analyse durch "verblindete" Experten Ergebnisdifferenzen durch ärztliche Fachrichtung kleine Fallzahl 	2-
Pietsch_2018	Fallserie	Alter 4-16 Verdacht auf distale Vorderarm -Fraktur	5	Point-of-care US	Rö	• Überlegen- heit der US Untersuchung	 5 Fälle mit negativem Rö und positivem US Befund Sensitivität und Spezifität von US Diagnostik 99,5% (bei 101 Fällen) 	 Serie von Sonderfällen deskriptiv keine Angaben zu Stu 	3
Poonai et al_2017	Prospektiv Cross- section Auto- Kontrolle	Alter 4-17 Verdacht auf distale Vorderarm -Fraktur	169	Point-of-care US	Rö	Diagnostische Leistung Schmerzempfindung Untersuchungsdauer	 Sensitivität 95% Spezifität 94 % sign. niedrigere Algesie sign. kürzere Untersuchungsdauer 	 Post-hoc-US Bild Experten-Bewertung retrospektive Algesie-Bewer tung Analgetika-Anwendung bei Aufnahme 	2++
Pountos et al_2010	Prospektiv Cross- sektion Auto- Kontrolle Randomi- siert bez. Therapie	Alter 0-16 Wulst- und Grünzweig -Frakturen mit <10 ⁰ Abweich- ung	79	von 2-3 Tagen	Rö bei Auf- nahme (vor US)	Diagnosti- sche Leistung	 100% der Frakturen durch US diagnostiziert 5% der Frakturen durch Rö verfehlt 	 Schwerpunkt Therapieverfahren deskriptiv US nach Rö, keine Angabe zu Verblindung 	2-

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Rezashah et al_2014▲	Prospektiv Cross- section Auto- Kontrolle	Alter >21 Reposition distaler Radius- Fraktur	30	US nach Reposition	Rö	Diagnose korrekter Re- position	Sensitivität 100%Spezifität 80%PPV 97%NPV 100%	 Schwer- punkt Reposition keine Ver- blindung geringe Fall- zahl 	2- oder n.a.
Rowlands et al_2016	Prospektiv Cross- section Auto-Kont- rolle	Alter 0-16 Verdacht Vorderarm -Fraktur	419	Point-of-care US	Rö	Diagnostisc he Leistung von minimalaus gebildeten Ärzten Schmerzempf indung	 Sensitivität 92% Spezifität 88% PPV 97% NPV 100% keine sign. Differenz zw. Algesie bei US und Rö 	willkürliche Stichprobe heterogene Qualifikation nicht-stan- dardisierte Analgesie bei >50% missing data bei Analgesie- Bestimmung	2++
Sivrikaya et al_2016▲	Prospektiv Cross- section Auto-Kont- rolle	Alter >17 Vorderarm Trauma	90	Point-of-care US	Rö (± CT bei Unsicherheit)	Diagnostische Leistung bei Radius- und Ulna-Frak turen	Radius • Sensitivität 100% • Spezifität 88% • PLR 8,5 • NLR 0,0 Ulna • Sensitivität 90% • Spezifität 94% • PLR 16,5 • NLR 0,11	 CT nicht in allen Zweifelsfällen Untersucher erst nach erfolgreichem Test zugelassen 	2+
Slaar et al_2016	Prospektiv Cross- section Auto- Kontrolle	Alter 3-18 Handge- lenktrauma (ohne Handwur- zelknochen	787	Point-of-care US	Rö	Diagnostische Leistung Validierung von diagnostische m Modell basiert auf 6 Klinischen	 Sensitivität 96% Spezifität 37% Rö-Vermeidung in 22% Modellanwendung verfehlt Frakturen in 4,3% ROC-Fläche 0,79 	Selection Bias nicht ausgeschlossen Spezifität- Schwelle zugunsten höherer Sensitivität definiert	2++

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt Prädiktoren	Wichtigste Ergebnisse		Evidenz- Niveau
Tandogan et al_2015	Prospektiv Cross- section Auto- Kontrolle	Alter 1-15 Vorderarm Trauma	105	Point-of-care US	Rö	Diagnostische Leistung	 Sensitivität 98% Spezifität 96% PPV 97% NPV 98% PLR 23,6 NLR 0,018 Genauigkeit 97% 	nur Grundlagentrai ning Suche beschränkt auf Diaphyse und kortikale Lä- sion	2+
Varga et al_2017	Prospektiv Cross- section Auto-Kont- rolle	Kinder Handge- lenktrauma bei nicht- geschlosse -ner Wachs tumsfuge	467	Point-of-care US	Rö (2 Ebenen)	Diagnostische Leistung	Sensitivität 97%Spezifität 96%	• Volltext auf Ungarisch	2+
Willamson et al_2000	Prospektiv Cross- section Auto-Kont- rolle	Alter 2-14 Verdacht auf nicht- dislozierte Fraktur ohne Ge- lenkbetei- ligung	26	Point-of-care US	Rö (2 Ebenen)	Diagnostische Leistung	Sensitivität 100%Spezifität 100%	Inklusion nach Entscheidung des aufnehmenden Arztes Minimaltranin g sehr kleine Fallzahl	2-

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Douma den-Hamer et al_2016	Medline, Web of Science, Cochrane	16 Studien 1 204 Fälle	Zusammengefasste US Leistungscharakteristika bei pädiatrischen distalen Vorderarmfrakturen • Sensitivität 97% • Spezifität 95% • PLR 20,0 • NLR 0,03 • Diagnostic odds ratio 667 US in 6 Projektionen zeigt bessere Leistungsindizes als 4 Projektionen	 mittlere bis gute Studien- qualität Qualitätsbe- wertung nach QUADAS-2 	2++
May & Grayson_200			Trotz vielversprechender Daten gibt es keine eindeutige Empfehlung für die Bevorzugung von US vor Radiografie als diagnostisches Verfahren in pädiatrischen Vorderarmfrakturen	Kurze Übersicht keine Angaben zu Studienqualität	2+
Katzer et al_2015	Medline, EMBASE, Cochrane	777 Fälle	Zusammengefasste US Leistungscharakteristika bei pädiatrischen Vorderarmfrakturen • Sensitivität 64-100% • Spezifität 73-100% Ersatz von Radiografie durch US erbringt Kosteneinsparung von 22,8%	Qualitätsbewertung nach QUADAS-2 Bias-Risiko niedrig bis moderat 2 Studien und Reviews mit Teilergebnissen (mehrere anatomische Regionen untersucht)	2++

PICO 09 Mittelhand & Handgelenk

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Aksay et al_2015	Prospektiv Auto- Kontrolle	Alter >14 Handtrau- ma	81	Point-of-care US	Rö (vor US)	Diagnostische Leistung bei Fraktur des MHK V	 Sensitivität 97% Spezifität 93% PPV 98% NPV 93% PLR 14 NLR 0,03 	 willkürliche Stichprobe heterogene US Qualifikation Intervall zw. Trauma und Untersuchung bis zu 7 Tagen 	2+
Aksay et al_2016	Prospektiv Cross- section Auto- Kontrolle	Alter >14 Verdacht auf Pha- lanxfraktur	119	Point-of-care US	Rö (vor US)	• Diagnosti- sche Leistung bei proximaler und mittlerer Phalanx- Fraktur	 Sensitivität 79% Spezifität 90% PPV 72% NPV 93% PLR 7,93 NLR 0,23 	 underpower minimales Training unzureichende Auflösung der Radiografie 	2+
Hakimi Nia et al_2019	Prospektiv Cross- section Auto- Kontrolle	Erwachsen Verdacht auf meta- karpale Fraktur	73	Point-of-care US	Rö	Diagnosti- sche Leistung bei metakarpa- len Frakturen	 Sensitivität 84% Spezifität 88% PPV 84% NPV 90% Korrelation zwischen US und Rö κ 0,78 	• Volltext auf Persisch, da- her Bias nicht identifizierbar	2-

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Hedelin et al_2017	Prospektiv	Alter 3-16 Verdacht auf Fraktur im Hand- gelenkbe- reich	6 Ärzte mit Mini- maltrai- ning 116 Fälle	Point-of-care US	Rö	US Triage nach Minimal- training US Differen- zierung zw. kompletten und Wulst- Frakturen	 Sensitivität 97% Spezifität 84% Unfallärzte mit Minimalerfahrung können durch US Handgelenkfrakturen erfolgreich identifizieren Ungenügende Leistung ist bei der Differenzierung zw. kompletten und inkomplet- ten Frakturen bemerkbar 	willkürliche Stichprobe underpower geringe Zahl von US Untersuchern	2-
Hennecke et al_2010	Prospektiv Observa- tion	Erwachsen Subkapita- le Fraktur von MHK IV oder V 2 Wo nach Trauma/ Therapie	20 Fälle 2 Unter- sucher	US	Rö	Vergleich der palmaren Abkippung Eignung der US Methode	 Rö-Messung zeigt durch- weg höhere Abkippung als US Interobserver-Übereinstim- mung ist höher bei US Mes- sungen 	 US Messver- fahren nicht validiert kleine Un- tersucher- und Fall-Zahl unterschied- liche Fraktur- Behandlung 	2-
Javadzadeh et al_2014\$	Prospektiv Cross- section Auto- Kontrolle	Alter 18- 74 Handge- lenktrauma	155 davon 49 Frak- turen	Point-of-care US	Wasserbad US Rö (Referenz)	Vergleich US diagnostischer Leistungsindizes (POCUS vs. Wasserbad)	 Bei Mittelhand- und Pha- lanx- Frakturen zeigt POCUS die höchsten NPV und NLR Das Wasserbad-Verfahren zeigt die höchste Sensitivität bei Phalanx-Frakturen 	 keine Randomisierung der Reihenfol- geder US-Anwendung keine Verblindung kleine Untergruppen 	2+
Kocaoglu et al_2016	Prospektiv Auto- Kontrolle	Alter >18 Verdacht auf MHK Fraktur	96	Point-of-care US	Rö	Diagnosti- sche Leistung	 Sensitivität 92% Spezifität 98% PPV 97% NPV 95% 	 kein bzw. lange zurück- liegendes Training underpower willkürliche Stichprobe 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Kozaci et al_2015_b	Prospektiv Cross- section Auto- Kontrolle	Alter 5-55 Verdacht auf MHK Fraktur	66	Point-of-care US	Rö	Diagnosti- sche Leistung	Sensitivität 92%Spezifität 87%PPV 89%NPV 90%	• keine Angaben zu Zahl und Qualifikation der Untersucher	2+
Neri et al_2014	Prospektiv Cross- section Auto- Kontrolle	Alter 2-17 Hand- trauma	204	Point-of-care US 6 Untersucher	Rö (vor US)	Diagnosti- sche Leistung Überein- stimmung zw. US-Experten und Unfall- ärzten	Experten/Unfallärzte • Sensitivität 91/92% • Spezifität 97,6/96,8% • PPV 96/95% • NPV 95/95% Häufigste Fehlerquelle: Epiphysenfuge als Fraktur interpretiert	• willkürliche Stichprobe	2++
Simanovsky et al_2009 %	Prospektiv Cross- section Auto- Kontrolle	Alter 2-16 Handtrau- ma mit ne- gativem Rö- Befund	17	Point-of-care US nach nega- tivem Rö-Be- fund	-Rö vor US -kontralaterale intakte Region -Periostale Re- aktion im Rö Follow-up nach 3 Wo	• US Detektion von Rönegativen Frakturen	 US kann Rö-negative Frakturen visualisieren US wird nicht als führende Diagnostikmethode empfohlen 	• sehr kleine Fallzahl • deskriptiv	2-
Tayal et al_2007	Prospektiv Cross- section Auto- Kontrolle	Alter >17 Trauma distal vom Handge- lenk	78	Point-of-care US 4 Untersucher	Rö	• Diagnosti- sche Leistung	 Sensitivität 90% Spezifität 98% PPV 97% NPV 94% PLR 42,5 NLR 0,1 	• erfahrene Untersucher • klinische und US Untersuchung durch denselben Arzt	2+

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
	Medline, Embase,	35 Studien	US wurde als Index-Test für die Diagnose metakarpaler und phalangealer	Qualitätsbe-	2+
	Cochrane, Web of		Frakturen in 3 Studien verwendet. Die Leistungsindizes sind	wertung nach	
	Science, ProQuest,	davon 3 mit US als	• Sensitivität 73-94%	QUADAS-2	
	Cinahl ab	Index-Test für die	• Spezifität 78-98%	• Untererfas-	
%		Handregion	• PPV 79-97%	sung wichtiger	
	2000		• NPV 70-98%	Angaben in 23	
			• Genauigkeit 70-96%	von 35 Studien	
al_			Die folgenden Vorteile empfehlen US Anwendung in der Notaufnahme	 inkomplette 	
et			• kurze Zeitdauer	Beschreibung	
nan			Vermeidung von Radiografie	des Index- o.	
stn			Wiederholbarkeit	Referenz-Tests	
Krastman			Verfügbarkeit vor Ort		
	Pubmed, Embase,	7 Studien	Diagnostische US Anwendung zeigt die folgende Leistungen	Qualitätsbe-	2++
	Cochrane, Web of	842 Fälle	• Sensitivität 91%	wertung nach	
	Science		• Spezifität 96%	QUADAS-2	
			• PLR 20,66	• relativ hohe	
6	bis 06.2019		• NLR 0,09	Studienqualität	
2019			• Diagnostische Odds-Ratio 231,17	 vorwiegend 	
al_2				monozentri-	
et s				sche Studien	
Zhao et				 Selection 	
Zh				Bias	

PICO 10 Fibrocartilago palmaris

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Saito et al_2016	Prospektiv Observat.	Alter > 18 Trauma proximaler interphalan gealer Ge- lenke ± Palmarplat- tenriss	11	US 12 Wo nach Trauma	kein	Bewegungs- einschränkung	US kann durch Darstellung der Palmarplatten-Mobilität die posttraumatische Bewegungseinschränkung einschätzen	• sehr kleine Fallzahl • heterogene Traumen (50% ohne Involvierung der Palmar- platte)	2-
Xue et al_2020	Observat. Cross- section	Erwachsen Osteoarth- ritis, rheu- matoide Arthritis, gesunde Kontrollen	davon 101 gesund	US	kein	• Prävalenz von Effusion zwischen der Palmarplatte und der Sehne von m. flexor digitorum	 US Zeichen von Effusion sind ein häufiger Normalbefund bei Gesunden (38%). Prävalenz bei Osteoarthritis ist 35%; bei rheumatoider Arthritis 12% Die Prävalenz ist gleich bei der dominanten und nicht-dominanten Hand US Effusion ist kein Zeichen inflammatorischer o. degenerativer Prozesse 	• kein age- matching	2++

Meta-Analysen und Systematische Reviews

_

PICO 11 Scaphoid

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Fusetti et al_2005	Prospektiv Verblindet Auto- Kontrolle	Alter >18 Verdacht auf Scapho id- Fraktur bei unkla- rem Rö	24	Hochauflö- sung US	СТ	 Diagnostische Leistung Validierung prädiktiver Kriterien 	 Sensitivität 100% Spezifität 79% PPV 56% NPV 100% Gelenkerguss, kortikaler Riss und hoher Hauger Verdachtsindex sind zuverlässige Frakturprädiktoren 	 relativ kleine Fallzahl US kann den Scaphoid nicht als Ganzes erfassen 	2+
Hauger et al_2002	Prospektiv Auto-Kont- rolle	Alter 10- 75 Verdacht auf Scapho id-Fraktur bei unkla- rem Rö	54	Hochauflö- sung US	Rö-Nachkont- rolle CT, MRT. Szintigrafie in Einzelfällen	Diagnostische Leistung bei Prädiktor -Kortikalriss -Weichteilver- änderungen	Kortikalriss zeigt sehr gute Prädiktionsstärke Sensitivität 100% Spezifität 98% PPV 83% NPV 100% Genauigkeit 98% Weichteilveränderungen haben geringe Spezifität Sensitivität 100% Spezifität 65% PPV 23% NPV 100% Genauigkeit 68%	 Ergebnis nicht genera- lisierbar, da alle Fraktur- fälle im Tail- lenbereich keine Ver- blindung 	2+
Herneth et H	Prospektiv Auto-Kont- rolle	Alter 16- 55 Verdacht auf okkulte Scaphoid- Fraktur	15	Hochauflö- sung US	Rö (vor US) MRT als Refe- renz	Vergleich der diagnosti- schen Parame- ter von US und Rö	Leistung US vs. Rö • Sensitivität 78 vs 56% • Spezifität 100 vs 100% • PPV 100 vs 100% • NPV 75 vs 60% • Genauigkeit 87 vs 73%	• sehr kleine Fallzahl	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Jain et al_2018	Prospektiv Auto-Kont- rolle	Alter 10- 65 Verdacht auf Scapho id-Fraktur	114	Hochauflö- sung US mit Farb-Doppler bei Bedarf	Rö MRT als Refe- renz	• Vergleich der diagnosti- schen Parame- ter von US und Rö	Leistung US vs. Rö • Sensitivität 80 vs 36% • Spezifität 77 vs 40% • PPV 90 vs 62% • NPV 58 vs 18% • Genauigkeit 98 vs 20%	• keine Ver- blindung bez. Rö-Ergebnis	2++
Munk et al_2000 Jain et al_2018	Prospektiv Cross- section Auto- Kontrolle	Alter 13- 82 Klinische Fraktur- Symptome	57	US 7,5 MHz und Doppler 5-10 MHz	Rö bei Auf- nahme Rö nach 14 Tagen	• Diagnosti- sche Leistung US vs. Rö	 Sensitivität 50% Spezifität 91% PPV 56% NPV 90% Genauigkeit 84% 	 kleine Zahl pathologischer Fälle Diagnose- Kriterien nicht klar definiert 	2+
	Prospektiv Auto-Kont- rolle	Alter >18 Verdacht auf Scapho id-Fraktur bei negati- vem Rö	62	US	CT (Referenz)	Diagnostische Leistung Identifizierung von Hoch risikofrakturen (im proximalen o. mittleren Drittel)	Frakturdiagnose allgemein Sensitivität 92% Spezifität 71% PPV 46% NPV 97% Risikofraktur-Diagnose Sensitivität 100% Spezifität 67% PPV 30% NPV 100%	US Untersucher ohne Spezialerfahrung Diagnosekriterium "Hämarthrose" unsicher, insbesondere bei Frakturen benachbarter Knochen	2+
Senall et al_2004 Platon et al_2011	Prospektiv Auto- Kontrolle	Alter10-77 Verdacht auf Scapho id-Fraktur bei negati- vem Rö	18	Hochauflö- sung US	Rö bei Auf- nahme Rö nach 10-14 Tagen (mehr- fach)	Diagnostische LeistungKosteneinsparung	 Sensitivität 78% Spezifität 89% PPV 88% NPV 80% Kosten ca. 65% niedriger als CT oder MRT 	sehr kleine Stichprobe t-Test für nichtparamet- rische Daten	2-

Ref	Design	Popula-	Stich-	Intervention	Komparator	Primär-	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz-
		tion	probe			Endpunkt			Niveau
[3	Prospektiv	Verdacht	63	Point-of-care	MRT	Diagnosti-	• Sensitivität 100%	• keine Ver-	2+
20	Auto-Kont-	auf Scapho		US		sche Leistung	• Spezifität 34%	blindung zu	
<u>a</u>	rolle	id-Fraktur					• PPV 30%	klinischen	
et		bei negati-					• NPV 100%	Ergebnissen	
i.i.		vem Rö					Genauigkeit von US und	• Hand-US	
ldir							MRT ist vergleichbar	Training der	
X:I								Untersucher	

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Bäcker et al_2020	Medline, Cochrane, Google	42 Studien zu 51 diagnostischen Verfahren (darunter 10 mit 589 Fällen zu US)	 MRT zeigt die höchste Sensitivität (94%) Sensitivität von US (82%) ist mit dieser von CT gleich Die Spezifität von US (74%), sowie PPV (63%) und NPV (89%) sind signifikant geringerals bei allen anderen Modalitäten (CT, MRT, Szintigrafie) 	PRISMA Protokoll nicht eingehalten (keine Qualitätsbewertung) • keine Angabe zu statistischen Vergleichen	2+
Baldry_2010	Medline, CINAHL, EMBASE	5 Publikationen	 US ist bei der Detektion okkulter Scaphoid-Frakturen anwendbar US Sensitivität ist nicht ausreichend, um eine Scaphoid-Fraktur auszuschließen Die Kriterien, die ein positives US Ergebnis sind variabel und nicht immer klar definiert 	Erfüllt nicht QUADAS Qualitätskrite- rien kurze Über- sicht	2+
Carpenter et al_2014	Pubmed, EMBASE	75 Studien (darunter 6 mit US)	 Die vorgegebene Wahrscheinlichkeit einer okkulten Scaphoid-Fraktur beträgt 25% Anamnese und klinische Merkmale (mit der Ausnahme von Schmerz in der Foveola radialis) sind keine zuverlässige Prädiktoren der Diagnose US Leistungsparameter (gepoolt): Sensitivität 80%, Spezifität 87%, PLR 5,6, NLR 0,27 US kann eine Alternative zu CT oder Szintigrafie sein, wenn MRT nicht verfügbar ist Diagnostische Genauigkeit und Zuverlässigkeit von US in Abhängigkeit von der Qualifikation des Untersuchers benötigen zusätzlicher Bewertung 	• QUADAS-2 findet niedrige Studienqualität (heterogene De sign, Standard, Populationen)	2++

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Krastmann et al_2020 %	Medline, Embase, Cochrane, Web of Science, ProQuest, Cinahl ab	35 Studien davon 3 mit US als Index-Test für die Handregion	 Die diagnostische Genauigkeit von US bei Scaphoid-Frakturen ist mit der von CT, MRT und Szintigrafie vergleichbar Die klinische Symptomatik hat moderate Auswirkung auf die Diagnose von Scaphoid- Frakturen 	Qualitätsbe- wertung nach QUADAS-2: • Untererfas- sung wichtiger Angaben in mehreren Studien • inkomplette Beschreibung des Index- o. Referenz-Tests	2+
Kwee & Kwee_2018	Medline EMBASE bis Jan 2018	7 Studien 314 Fälle	 US Leistungsparameter (gepoolt): Sensitivität 86%, Spezifität 83% Spezifität diagnostischer Kriterien a) Kortikalriss 94-98% b) Radio-Scaphoid-Gelenkerguss 42% c) Erguss im Scaphoid-Trapezium-Trapezoideum-Gelenk 84% d) Hämarthrose oder Hämatom im Scaphoidbereich 65% -Kombination aus a+b+c 100% -Kombination aus a+d 65% 	QUADAS-2 Bewertung: • 2 Studien mit hohem Verzer- rungsrisiko (ihr Ausschluss än- dert nicht das Ergebnis)	2++

PICO 12 Triquetrum

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Krastman et al_2020 %	Medline, Embase, Cochrane, Web of Science, ProQuest, Cinahl ab	35 Studien davon 3 mit US als Index-Test für die Handregion	 Die diagnostische Sensitivität der klinischen Untersuchung und Radiografie bei Triquetrum- Frakturen beträgt 75% Es gibt keine Berichte über die Anwendung von US für die Diagnostizierung von Triquetrum-Frakturen 	• Qualitätsbewertung nach QUADAS-2 • Untererfassung wichtiger Angaben in 23 von 35 Studien • inkomplette Beschreibung des Index- o. Referenz-Tests	2+ oder n.a.

PICO 13 Rippen

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Hurley et al_2004	Prospektiv Cross- section Auto- Kontrolle	Alter >16 Verdacht auf Rippen fraktur	14	US	Rö Thorax Rö schräge Rippenprojek- tion (ObP)	• Fraktur-Er- kennungsrate • Dauer der Untersuchung	 US 93% Rö Thorax 73% Rö ObP 87% US Dauer 13 Min US ist als Routine nicht zu empfehlen: die Detektion ist nur marginal besser bei höherem Zeitaufwand und Schmerzbelastung 	 sehr kleine Fallzahl keine Verblindung deskriptiv 	2-
Hwang & Lee_2016	Retrospekt. Cross- section Auto- Kontrolle	Alter 3-91 Thorax- Trauma	201	US	Rö (vor US)	• Fraktur-Er- kennungsrate	 Rö erkennt insgesamt 34% US erkennt insgesamt 85% US erkennt 25% der Frakturen, die Rö nicht erkannt hat 	 deskriptiv keine Angaben zu Verblin dung langes Intervall zwischen Trauma und Untersuchung 	2+
Kara et al_2003	Prospektiv Cross- section	Alter >16 Thorax- Trauma ohne Rö- Frakturzei- chen	37	Transthoraka- ler US	Rö-Befund (vor US)	• Fraktur-Er- kennungsrate	 US erkennt Fraktur in 40% der Rö-negativen Fälle Alter und Dauer der Schmerzbeschwerden korrelieren signifikant mit positivem US-Befund 	relativ kleineFallzahlkeine Verblindung	2+
Kozaci et al_2019 %	Prospektiv Cross- section Auto- Kontrolle	Alter >18 Multiples Trauma inkl. Tho- rax	81	Point-of-care US	СТ	Diagnosti- sche Leistung	 Sensitivität 67% Spezifität 98% höchste US Sensitivität bei Sternum- und Clavicula- Frakturen, jedoch niedriger als diese von CT 	 CT durch 1 Radiologen bewertet Geringe Zahl von Rippenfrakture n 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Lalande et al_2017	Prospektiv Auto- Kontrolle	Alter >18 Thorax- Trauma	96 Fälle 11 Not- ärzte	Point-of-care US	Rö	Machbarkeit von US-Tho- raxuntersuch- ung in der Not aufnahme Schmerzemp findung Übereinstim- mung US-Rö	• 65% der Notärzte finden US-Untersuchung machbar • Fettsucht ist führende patientenabhängige Hindernis • US entdeckt mehr Rippenfrakturen (+29%) als Rö	Endpunkt-Bewertung mit nicht-validier-ter VAS willkürliche Stichprobe kein Referenzstandard	2-
Lee et al_2012	Prospektiv Cross- section Auto- Kontrolle	Alter >17 Thorax- Trauma mit negati- vem Rö- und CT- Befund	93	US	Rö (vor US) CT (vor US)	• Erkennungs- rate von Rip- penknorpel- Frakturen	 Rippenknorpel-Fraktur wurde durch US in 69% der Fälle festgestellt Subperiostales Hämatom ist ein häufiges Begleitzei- chen der Rippenknorpel- Fraktur (15% der Fälle) 	• deskriptiv • unklare Angaben zur In-/Exklusion von Patienten mit subperios- talen Hämato- men	2+
Paik et al_2005	Cross- Section Va- lidierungs- studie	Alter >22 Trauma- o. Ca-Ana- mnese mit positivem Szintigra- fie-Befund	58	US	Rö	Differential- diagnostischer Vergleich	 US verifiziert 96% und Rö 42% der szintigrafischen Läsionen Frakturen und Metastasen haben unterschiedliche Erscheinungsbilder 	• keine Angaben zur Verblindung • deskriptiv	2-
Pishbin et al_2017	Prospektiv Cross- section Auto- Kontrolle	Alter >14 Thorax- Trauma	61	US	Rö US+Rö Detek- tionsrate als Referenz	 Diagnostische Leistung US vs. Rö Übereinstimmung der Diagnose Zeitdauer der Untersuchung 	 Sensitivität 98 vs 41% Spezifität 100 vs 100% PPV 100 vs 100% NPV 96 vs 40% Übereinstimmung κ 0,28-0,32 Untersuchungsdauer US um 15 Min kürzer 	 hochqualifizierte Untersucher summarische Detektionsrate (US+Rö) als Referenz benutzt 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Rainer et al_2004 %	Prospektiv Cross- section Auto- Kontrolle	Alter >10 Thorax- Trauma	88	US bei Auf- nahme		Diagnostische Leistung US vs. Rö vs. klinische Symptomatik	 Sensitivität 80 -24 -26% Spezifität 83 -92 -92% OR 20,3 -3,4 -3,7 	• Indexmethode (US) als Referenz benutzt	2+
Turk et al_2010	Prospektiv Cross- section Auto- Kontrolle	Alter >25 Thorax- Trauma mit negati- vem Rö-	20	US bei Auf- nahme	Rö (vor US)	• Fraktur-Er- kennungsrate	• US diagnostiziert Fraktu- ren in 90% der Rö-negativen Fälle	• sehr kleine Fallzahl • deskriptiv	2-
Uzun et al_2013	Prospektiv Cross- section Auto- Kontrolle	Alter >15 Thorax- Trauma	100	US	Rö	• Fraktur-Er- kennungsrate	 Rö diagnostiziert Fraktur in 45% der Fälle US erkennt zusätzlich Fraktur in 85% der Rö-nega- tiven Fälle 	• deskriptiv • Intervall zw. Trauma und Untersuchung 2-14 Tage	2+
Wüstner et al_2005\$	Prospektiv Cross- section Auto- Kontrolle	Erwachsen Thorax- Trauma	100	US	Rö	• Fraktur-Er- kennungsrate • Pleuraerguß- Erkennungs- rate	 Frakturerkennung: US 100%; Rö 57% Pleuraerguß: US 100%; Rö 30% US entdeckt auch subpleurale Infiltrate (suggestiv für Lungenkontusion) 	 deskriptiv inkorrekte Datenbehandlu ng Intervall zw. Trauma und Untersuchung 1-36 Tage 	2+

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Battle et al_2019	Medline, EMBASE, Cochrane, Science Direct	13 Studien 886 Fälle	US ist bei der Diagnostizierung von Rippenfrakturen der Radiografie überlegen Die zahlreichen Schwächen und Verzerrungsrisiken verhindern eine eindeutige Empfehlung	• kleine mono- zentrische Stu- dien mit niedriger Qualität • QUADAS-2 Bewertung: hohes Bias- Risiko, hohe Heterogenität, uneinheitliche Referenzstandard s	2++
Yousefifard et al_2016	Medline, EMBASE, Cochrane, Web of Science, Scopus, ProQuest	17 Studien 1 667 Fälle	 US: Sensitivität (gepoolt) 97%; Spezifität (gepoolt) 94% Rö: Sensitivität (gepoolt) 77%; Spezifität (gepoolt) 100% Durch Radiologen durchgeführte US Untersuchung zeigt höhere Sensitivität (96%), als solche, die von einem Notarzt vorgenommen werden (90%) US diagnostiziert Rippenfrakturen mit höherer Sensitivität als solche von Sternum und Clavicula (91%) Die Interpretation des Radiologen ist der entscheidende Faktor für die diagnostische Leistung der Radiografie 	• QUADAS-2 Analyse dokumentiert mehrere Bias- Risiken (kleine Fallzahlen, fehlende Verblin- dung, hohe Heterogenität, selection bias)	2++

PICO 14 Sternum

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Chaplin & Mooney_2020	Retrospekt. Observat. über 10 J.	Alter 6-16 Diagnosti- zierte Ster- numfraktu- ren	65	Rö CT MRT	kein	Häufigkeit der Anwen- dung einer diagnostischen Methode	 keine Fraktur wurde durch US diagnostiziert häufigste Anwendung war Radiografie (63%), gefolgt von Thorax-CT (17%), Sternum-Rö (11%) und MRT (8%) 	 monozent-risch missing data nicht ausgeschlossen deskriptiv 	2-
_2006Engin et al_2000	Prospektiv Cross- section Auto- Kontrolle	Alter >18 Thorax- Trauma	23	Point-of-care US	Rö vor US (frontale und laterale Pro- jektion)	Diagnosti- sche Leistung	• US diagnostiziert zusätzlich Frakturen in 9% der Fälle, die als Rö-negativ ein- geordnet wurden	 relativ kleine Fallzahl keine Verblindung deskriptiv 	2-
Jin et al_2006	Prospektiv Cross- section Auto-Kont- rolle	Alter >15 Thorax- Trauma	50	US	Rö Szintigrafie	Diagnosti- sche Leistung	 US 100% Detektion Rö 31% Detektion Szintigrafie 46% Detektion 	deskriptiv kein Referenzstandard	2+
Kozaci et al_2019 %	Prospektiv Cross- section Auto- Kontrolle	Alter >18 Multiples Trauma inkl. Tho- rax	81	Point-of-care US	СТ	Diagnosti- sche Leistung	 Sensitivität 83% Spezifität 97% höchste US Sensitivität bei Sternum- und Clavicula- Frakturen, jedoch niedriger als diese von CT 	 CT durch 1 Radiologen bewertet Geringe Zahl von Sternumfrakturen 	2+
Mahlfeld et al_2001	Prospektiv Cross- section Auto- Kontrolle	Alter >27 Schmerzen in der Ster- numregion	11	US	Rö	• Fraktur-Diagnose	 US und Rö entdeckten alle Frakturen führende US-Frakturmerkmale sind Kortikalis-Unterbrechung und echoarme Zone 	• sehr kleine Fallzahl • deskriptiv	2-

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Rainer et al_2004 %	Prospektiv Cross- section Auto- Kontrolle	Alter >10 Thorax- Trauma	88	US bei Auf- nahme	Rö (vor US) US Kontrolle nach 3 Wo. als Referenz	Diagnosti- sche Leistung US vs. Rö vs. klinische Symptomatik	 Sensitivität 80 -24 -26% Spezifität 83 -92 -92% OR 20,3 -3,4 -3,7 	• Indexmethode (US) als Referenz • keine Trennung Sternum vs. Rippen	2+
Wüstner et al_2005\$	Prospektiv Cross- section Auto- Kontrolle	Erwachsen Thorax- Trauma	100	US	Rö	• Fraktur-Er- kennungsrate	• US entdeckt 100% und Rö 86% der Sternum-Frakturen	 deskriptiv sehr kleine Zahl von Sternumfrak turen Intervall zw. Trauma und Untersuchun g 1-36 Tage 	2+
Yeom et al_2001	Prospektiv Cross- section Auto-Kont- rolle	Alter 5-81 Schmerzen in der Ster- numregion nach Tho- raxtrauma	44	US	Rö (vor US) Szintigrafie	• Fraktur-Er- kennungsrate	 US 100%, Rö 43%, Szintigrafie 62% US ist geeignet auch für Diagnostik von Weichteil-Pathologie (Hämatome, Knorpelläsionen) 	nur Abstract; Volltext Koreanisch deskriptiv keine Angaben zu Verblindun g	2-
You et al_2010	Prospektiv Cross- section Auto-Kont- rolle	Alter 8-78 Schmerzen in der Ster- numregion nach Tho- raxtrauma	36	US bei Aufnahme US-Kontrollen am 3. Tag und nach 1, 2 und 3 Wochen	Rö (vor US)	Diagnostische Leistung	 US Sensitivität und Spezifität 100% Rö Sensitivität 71%, Spezifität 75% US Frakturkriterium Kortikalis-Unterbrechung 	 relativ kleine Fallzahl Konsensus- Entscheidung kein Referenzstandard 	2+

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Racine & Drake_2015	Medline, EMBASE, Cochrane	4 Studien	Bei der Diagnostizierung von Sternum-Frakturen ist US der Radiografie überlegen	 deutschsprachige Publikationen ausgeschlossen kein Referenz standard kleine Fallzahlen 	2+
Yousefifard et al_2016 \$\$	Medline, EMBASE, Cochrane, Web of Science, Scopus, ProQuest	17 Studien 1 667 Fälle (davon 5 Studien zu Sternum-Fraktur)	 US: Sensitivität bei Sternum-Frakturen (gepoolt) 91%; Spezifität (gepoolt) 93% Rö: Sensitivität (gepoolt) 77%; Spezifität (gepoolt) 100% Durch Radiologen durchgeführte US Untersuchung zeigt höhere Sensitivität (96%), als solche, die von einem Notarzt vorgenommen werden (90%) US diagnostiziert Rippenfrakturen mit höherer Sensitivität als solche von Sternum und Clavicula (91%) Die Interpretation des Radiologen ist der entscheidende Faktor für die diagnostische Leistung der Radiografie 	• QUADAS-2 Analyse dokumentiert mehrere Bias-Risi- ken (kleine Fall zahlen, fehlende Verblindung, hohe Heterogenität , selection bias)	2+

PICO 15 Femur

Klinische Studien

Ref	Design	Popula-	Stich-	Intervention	Komparator	Primär-	Wichtigste Ergebnisse	Schwächen/	Evidenz-
		tion	probe			Endpunkt		Bias	Niveau
Akimoto et al_2020 ▲	Prospektiv Cross- section Auto- Kontrolle	Erwachsen Akuter Schmerz im Hüftbe- reich	52	Tragbares US Gerät	Rö CT MRT	 Diagnostische Leistung nach Kriterien "kortikale Diskontinuität " und "Gelenkerguß " Differentialdi agnostik von akuter Arthritis 	 Sensitivität 96% Spezifität 92% US Gelenkerguß 	 kein Bezug zur vorgegebenen Altersgruppe keine Metho denvalidierun g bez. Körpergröße 	

PICO 16 Tibia

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Allen et al_2020 ▲	Prospektiv Auto- Kontrolle	Alter >18 Knöchel- verstauch- ung bei ne- gativem Rö- Befund	100	US innerhalb von 5 Tagen nach Trauma	CT innerhalb von 5 Tagen nach Trauma	Diagnosti- sche Leistung	Frakturdetektion CT 19%; US 7% Abriss-Frakturen CT 43%; US 40% Gelenkerguss ist nicht immer mit Fraktur assoziiert US kann radiologische Untersuchungsmethoden nicht vollständig ersetzen	 deskriptiv keine Untersuchung der Korrelation zwischen Rö- und CT-Be- fund betrifft nicht Zielregion und Altersgruppe 	2+ oder n.a.
Atilla et al_2014 ▲	Prospektiv Cross- section Auto- Kontrolle	Alter > 18 Knöchel- verstauch- ung Erfüllte Ottawa Kriterien	246	Point-of-care US	Rö bewertet durch Ortho- päden CT bei Bedarf	Diagnosti- sche Leistung	US Sensitivität 87%US Spezifität 96%	Referenz: Rö Bewertung durch 1 Person geprüfte US Untersucher betrifft nicht Zielregion und Altersgruppe	2+ oder n.a.
Bullock et al_2017 ▲	Prospektiv Auto- Kontrolle	Alter >18 Knöchel- verstauch- ung bei ne- gativem Rö- Befund	100	US innerhalb von 5 Tagen US Follow-up	СТ	Inzidenz und Art der Weich telverletzung Genesungs- dynamik	 US entdeckt Ligamentverletzungen in allen Fällen Häufigste Lokalisation: Lig. talofibulare ant., Lig. calcaneofibulare, Lig. talonaviculare 	60% missing follow-up betrifft nicht Zielregion und Altersgruppe	2+ oder n.a.

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Canagasabey et al_2010	Prospektiv Auto- Kontrolle	Alter > 16 Knöchel- verstauch- ung Erfüllte Ottawa Kriterien	110	US	Rö	Diagnosti- sche Leistung bei Frakturen	 Sensitivität 91% Spezifität 91% PPV 53% NPV 99% PLR 10,0 NLR 0,10 	 sehr kleine Fraktur-Fall- zahl US Unter- sucher mit 2 T. Training betrifft nicht Zielregion und Altersgruppe 	2+ oder n.a.
Crombach et al_2020 ▲	Prospektiv Auto-Kont- rolle	Alter >17 Knöchel- verstauch- ung Erfüllte Ottawa Kriterien	23 Unter- sucher 1 Experte	Point-of-care US	Rö	Diagnosti- sche Leistung Untersucher/ Experte	 Sensitivität 80 / 83% Spezifität 90 / 99% PPV 70 / 97% NPV 94 / 95% 	 hochqualifizierte US Untersucher Abrissfrakturen ausgeschlossen Inkomplette Verblindung betrifft nicht Zielregion und Altersgruppe 	2+ oder n.a.
Ekinci et al_2013 ▲ C	Prospektiv Auto-Kont- rolle	Alter >16 Knöchel- verstauch- ung Erfüllte Ottawa Kriterien	131	Point-of-care US	Rö	Diagnosti- sche Leistung	Sensitivität 100%Spezifität 99%PPV 95%NPV 100%	hochqualifizierte US Untersucher relativ kleine Frakturzahl betrifft nicht Zielregion und Altersgruppe	2+ oder n.a.
Massaeli et la	Cross- section Auto- Kontrolle	Alter >16 Knöchel- verstauch- ung	36	US	Rö	Diagnosti- sche Leistung	• Sensitivität und Spezifität 100%	nur 2 Frakturfälle betrifft nicht Zielregion und Altersgruppe	2- oder n.a.

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Ozturk et al_2017 ▲	Prospektiv Auto-Kont- rolle	Alter >18 Verdacht auf laterale Maleolar- fraktur	120	Point-of-care US	Rö CT (bei Bedarf)	• Diagnosti- sche Leistung US vs Rö	 Sensitivität US 100, Rö 93 Spezifität US 93, Rö 100 	willkürliche Stichprobe CT als Referenz nur bei Unsicherheit betrifft nicht Zielregion und	2+ oder n.a.
Simanovsky et Oal_2005	Prospektiv Cross- section Auto- Kontrolle	Alter 5-13 Frakturver- dacht bei negativem Rö-Befund	20	US	Rö (vor US) Follow-up US	• Fraktur-Detektionsrate	• US diagnostiziert Malleus- Frakturen in 35% der Rö- negativen Fälle	Altersgruppe • deskriptiv • sehr kleine Fallzahl • betrifft nicht Zielregion	2- oder n.a.
Simanovsky et sal_2009 \$	Prospektiv Cross- section Auto- Kontrolle	Alter 2-16 Knöchel- Trauma bei negativem Rö-Befund	41	Point-of-care US	Rö vor US -kontralaterale intakte Region -Periostale Re- aktion im Rö Follow-up nach 3 Wo	• Fraktur-Detektionsrate	• US diagnostiziert Fibula- Frakturen in 30% der Rö- negativen Fälle	 deskriptiv relativ kleine Frakturzahl betrifft nicht Zielregion 	2- oder n.a.
Tollefson et sal_2016 ▲ sal_2016	Prospektiv Auto- Kontrolle	Alter > 18 Knöchel- trauma Erfüllte Ottawa Kriterien	50	Point-of-care US	Rö	 Diagnostische Leistung Einfluss von US Anwen- dung auf Otta- wa- Kriterien 	 US Sensitivität, Spezifität, PPV und NPV 100% Durch US anstelle einer Radiografie steigt Ottawa- Kriterien-Spezifität von 50 auf 100% 	 willkürliche Stichprobe underpower betrifft nicht Zielregion und Altersgruppe 	2+ oder n.a.

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Jonckheer et al_2016 ▲	Medline, ochrane, EMBASE, Pedro, CINAHL, Medion	21 Studien 1 Review	 Sensitivität und Spezifität von Ottawa Kriterien betragen 92-100 bzw. 16-52% Einführung von US kann die diagnostische Leistung der Ottawa Kriterien verbessern und ca. 80% der Radiografien vermeiden 	betrifft nicht Zielregion und Altersgruppe moderates Bias-Risiko nur 3 US Studien, z.T. mit inkonklusiven Ergebnissen	2+ oder n.a.
Najaf-Zadeh et al_2014 ▲	Medline, INIST, Cochrane	9 Studien 187 Fälle (davon 2 mit US als Index-Test)	Prävalenz okkulter Frakturen 24% US Detektion okkulter Knöchel-Frakturen • Sensitivität 100% • Spezifität 93 - 97% • PLR 9 – 20 • NLR 0,04 – 0,08 US ist eine erfolgversprechende diagnostische Methode bei okkulten Frakturen	Adaptation eines nichtstandardisierten Systems für Qualitätsbewertung kleine Fallzahlen Verifizierung der US Diagnose durch Rö-Follow-up betrifft nicht Zielregion	2+ oder n.a.
Wu et al_2020 ▲	Medline, EMBASE, Cochrane	10 Studien 1065 Fälle	 US diagnostische Leistung Sensitivität 96% Spezifität 94% PLR 15,0 NLR 0,04 Odds ratio 367 ROC Kurvenfläche 0,99 	QUADAS-2 Bewertung • hohe Heterogenität • geringe Bias-Risiken • betrifft nicht Zielregion und Altersgruppe	2++ oder n.a.

PICO 17 Mittelfuß

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Atilla et al_2014 😘	Prospektiv Auto-Kont- rolle	Alter > 18 Knöchel- o. Fußge- lenk ver- stauchung Erfüllte Ottawa Kriterien	246	Point-of-care US an -Knöchel - <i>Os naviculare</i> -MFK 5	Rö bewertet durch Ortho- päden CT bei Bedarf	Diagnosti- sche Leistung	US Sensitivität 87% US Spezifität 96%	 Referenz: Rö Bewertung durch 1 Person geprüfte US Untersucher 	2++
Banal et al_2009	Prospektiv Cross- section Auto- Kontrolle	Alter >22 Verdacht auf MFK Stress-Frak tur bei ne- gativem Rö- Befund	37	US	Rö (vor US) MRT als Refe- renzstandard	Diagnostische Leistung	 Sensitivität 83% Spezifität 76% PPV 59% NPV 92% PLR 3,45 NLR 0,22 	 relativ kleine Frakturfallzahl Untersuchung mehrere Wochen nach Auftreten der Beschwerden 1 US Untersucher 	2+
Crombach et al_2020 %	Prospektiv Auto-Kont- rolle	Alter >17 Knöchel- o. Fußge- lenk ver- stauchung Erfüllte Ottawa Kriterien	23 Unter- sucher 1 Experte	Point-of-care US an -Knöchel -Os naviculare -MFK 5	Rö	Diagnostische Leistung Untersucher/ Experte	 Sensitivität 80 / 83% Spezifität 90 / 99% PPV 70 / 97% NPV 94 / 95% 	 hochqualifi- zierte US Un- tersucher Abrissfrak- turen ausge- schlossen inkomplette Verblindung relativ kleine Frakturfallzahl 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Dudkiewicz et al_2005	Prospektiv Auto-Kont- rolle	Alter >16 Knöchel-o. Fußtrauma mit negati- vem Rö- Befund	121	US	Rö (vor US) Rö nach US als Referenz bzw. Szinti- grafie bei un- klarem Befund	• Frakturdia- gnose	 22 Frakturen von MFK 5 diagnostiziert US ist eine reliable diagnostische Option bei okkulten Frakturen 	deskriptiv relativ kleine Frakturfallzahl wiederholte Rö-Nutzung als Referenz	2-
Ebrahimi et al_2019]	Prospektiv Cross- section Auto- Kontrolle	Alter >16 Stumpfes Fußtrauma	102	Point-of-care US	Rö	Diagnosti- sche Leistung	 Sensitivität 97% Spezifität 84% PPV 73% NPV 98% PLR 6,25 NLR 0,04 Fläche unter ROC 0,91 	•	2++
Ekinci et al_2013 %	Prospektiv Auto-Kont- rolle	Alter > 16 Knöchel- o. Sprung- gelenk- Trauma Erfüllte Ottawa Kriterien	131	Point-of-care US an -OSG -USG -MFK 1-5	Rö	Diagnosti- sche Leistung	Sensitivität 100%Spezifität 99%PPV 95%NPV 100%	• hochqualifizierte US Untersucher • kleine Fraktur-Fallzahl, mit >50% am Lateralknöchel	2+
Tollefson et al_2016 \$\mathscr{S}\$	Prospektiv Auto-Kont- rolle	Alter >18 Knöchel-o. Fußtrauma Erfüllte Ottawa Kriterien	50	Point-of-care US	Rö	 Diagnostische Leistung Einfluss von US Anwen- dung auf Otta- wa- Kriterien 	 US Sensitivität, Spezifität, PPV und NPV 100% Durch US anstelle einer Radiografie steigt Ottawa- Kriterien-Spezifität von 50 auf 100% 	 willkürliche Stichprobe underpower nur 4 MFK Frakturen 	2-
Yesilaras et al_2014	Prospektiv Cross- section Auto- Kontrolle	Alter >14 Fußtrauma, Verdacht auf MFK 5 Fraktur	48	Point-of-care US	Rö	Diagnosti- sche Leistung	 Sensitivität 97% Spezifität 100% PPV 100% NPV 98% PLR (extrem hoch) NLR 0,03 	• nur 1 US Untersucher ohne Spezial- training	2+

PICO 18 Toddlers Fraktur

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Carsen et al_2020	Prospektiv Cross- section Auto- Kontrolle	Alter <3 Verdacht auf Todd- lerfraktur	27	Point-of-care US	Rö bei Auf- nahme Rö zur Diagno sebestätigung nach 7-10 T.	• Fraktur-Dia- gnoserate	 Frakturdetektion in 18% (davon 7% Rö-negativ bei Aufnahme) Rö Bestätigung anhand von periostaler Reaktion in allen US-diagnostizierten Fällen 	• Kongress- Abstract • kleine Fall- zahl	2-
Lewis & Logan_2006	Fallserie	Alter <2 Verdacht auf Todd- lerfraktur bei negati- vem Rö- Befund	3	Point-of-care US	Rö zur Diagno sebestätigung	• Fraktur-Dia- gnoserate	US diagnostiziert Toddler- Frakturen mit hoher Zuverlässigkeit	• Fallserie • extrem nied- rige Fallzahl	2-
Llorente Pelayo et la 2020	Retrospekt. über 5 J. Deskriptiv	Alter <3 Toddler Fraktur	53	keine	keine	Diagnosti- sche Methode	 Inzidenz 70% US wurde in 1 Fall (1,9%) verwendet Follow-up US wurde bei 5 Fällen (9%) verwendet Rö-Befund unauffällig in 25% der Fälle Radiografie hat ungenügende Sensitivität 	• Fall-Identifizierung nach Dunbar-Kriterien durch den aufnehmenden Arzt	2-

PICO 19 Stress-Fraktur

Klinische Studien

Ref	Design	Popula- tion	Stichpr obe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Banal et al_2009 😘	Prospektiv Cross- section Auto- Kontrolle	Alter >22 Verdacht auf MFK Stress-Frak tur bei ne- gativem Rö- Befund	37	US	Rö (vor US) MRT als Refe- renzstandard	Diagnosti- sche Leistung	 Sensitivität 83% Spezifität 76% PPV 59% NPV 92% PLR 3,45 NLR 0,22 	 relativ kleine Frakturfallzahl Untersuchung mehrere Wochen nach Auftreten der Beschwerden 1 US Untersucher 	2+
Farkash et al_2008	Prospektiv Auto-Kont- rolle	Alter >18 Verdacht auf Tibia- Stressfrak- tur (auch bilateral)	31 (62 Tibiae)	US	Szintigrafie (vor US)	Diagnosti- sche Leistung	 Sensitivität 67% Spezifität 53% PPV 57% NPV 63% keine Korrelation zw. Kortikalis-Stärke und Frakturinzidenz US hat niedrigere Detektionsrate als Szintigrafie 	1 US Untersucher • sehr homogene Population mit starker Belastung (Wehrdienst) • keine klinische Untersuchung vor US Test	2+
Papalada et al_2012 F	Prospektiv Auto-Kont- rolle	Alter17-28 Verdacht auf einsei- tige Stress- fraktur (Un terschenkel und Fuß)	113	US Therapie (2W/cm ²)	MRT	Diagnosti- sche Leistung	 Sensitivität 82% Spezifität 67% PPV 99% NPV 13% Genauigkeit 81% US diagnostische Leistung steigt mit Schweregrad der Läsion 	 homogene Population (Leistungs-sportler) symptom- freie Extremität als Kont- rolle 1 hochquali- fizierter Unter sucher 	2++

Ref	Design	Popula-	Stichpr	Intervention	Komparator	Primär- V	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz-
		tion	obe			Endpunkt			Niveau
omani et al_2000	Prospektiv Interven- tion	Alter >18 Symptome tibialer Stressfrak- tur	26	Therapeutische US Anwendung 1 MHz mit steigender Intensität alle 30 s.	US Anwen- dung am ge- sunden Bein	MRT Zeichen von Knochen- Remodellierun g als Merkmal okkulter Stressfraktur VAS Messung		• keine US Befund-Visu- alisierung • MRI findet keine einzige Kortikalis- Läsion • Remodellie- rung auch im gesunden Kno chen festge- stellt	2-

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Miller et al_2011	Medline, EMBASE, Cochrane	41 Publikationen	27 Klassifikationssysteme für Stressfrakturen; davon • 16 nach anatomischen Regionen • 11 nach Rö-Symptomatik • 16 nach verschiedenen radiologischen Modalitäten • nur 1 Studie mit US Untersuchungsergebnissen verwendet nicht-US-Klassifikation (Fredericson) Die Klassifikationssysteme berücksichtigen kaum klinische Frakturparameter	• 33 Reviews und Fallserien • keine Quali- tätsbewertung	2+ oder n.a.
Schneiders et al_2012	Medline, EMBASE, AMED, CINAHL, PeDRO, Scopus	9 Publikationen (davon 7 mit US Therapie und 2 mit Stimmgabel-Test)	Keine Evidenz zugunsten der Nutzung von US als diagnostische Methode für Stressfrakturen • Diagnostische Leistung (gepoolt): Sensitivität 64%, Spezifität 63%, PLR 2,1, NLR 0,3 • Stimmgabel-Test (nicht gepoolt): Sensitivität 35-92%, Spezifität 19-83%, PLR 0,6-3,0, NLR 0,4-1,6 Radiologische Bildgebung als Methode der Wahl empfohlen	QUADAS Bewertung: hohe Heterogenität, meist moderate Qualität und Genauigkeit	2++

Ref	Quellen Fallzahl		Zusammenfassung	Schwächen/	Evidenz-
				Bias	Niveau
Wright et al_2015	Medline,	21 Studien	Leistungsvergleich diagnostischer Methoden	• QUADAS 1	2++
	EMBASE,		• Radiografie: Sensitivität 12-56%, Spezifität 88-96%	Bewertung:	
	CINAHL,		• Szintigrafie: Sensitivität 50-97%, Spezifität 33-98%	meist moderate	
	SportDiscus		• MRT: Sensitivität 68-99%, Spezifität 4-97%	Evidenz (B);	
	bis Jan 2014		• CT: Sensitivität 32-38%, Spezifität 88-98%	US Studien mit	
			• US: Sensitivität 43-99%, Spezifität 13-79%	Evidenzgrad A	
			MRT als diagnostische Methode der Wahl empfohlen		
			US ist mehr sensitiv als spezifisch und zeichnet sich durch niedrige falsch-negative		
			Raten aus US Nutzung wird bevorzugt für den Ausschluss von Frakturen empfohlen		
			(starke Evidenz)		

PICO 20 Fraktur-Dislokation

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Akinmade et al_2018 \$	Prospektiv Auto- Kontrolle	Alter 1-15 Verdacht auf Fraktur langer Knochen	62	Point-of-care US Follow-up US nach 3 und 6 Wochen	Rö bei Auf- nahme Rö Follow-up nach 3 und 6 Wochen	Dislokation Detektion	 US-gemessene Dislokation ist sign. größer als diese er- mittelt bei Radiografie (4,94 mm vs. 2,48 mm) US diagnostiziert sign. mehr Frakturen, die eine Reposition erfordern 	• Nebenergebnis	2++
Dallaudiere et al_2015	Prospektiv Cross- section Auto- Kontrolle	Alter >18 Verdacht auf Fraktur nach Kfz- Unfall	83	Point-of-care US	Point-of care Rö	Fragment- zahlDislokation	 Fragmentzahl US 3,31 vs Rö 2,28 Dislokation in mm: US und Rö 5,47 keine signifikante Differenz bei der Beurteilung der Fraktur-Fragmentzahl und -Dislokation 	NebenergebnisRö als Referenzstandard	2++
Eckert et al_2013_a	Prospektiv Cross- section Auto- Kontrolle	Alter 1-13 Ellenbogen trauma	67	Point-of-care US (Projektio- nen n. Reetz und Pistor)	Rö (2 Ebenen)	Dislokation Detektion	 Dorsoradiale und dorsoulnare Projektion stellen reliables Vorgehen zur Beurteilung der Dislokation dar Bei Dislokationsverdacht ist Rö für die Diagnose ausschlaggebend 	• sehr kleine Fallzahl dislo- zierter Fraktu- ren (5) • keine Quan- tifizierung der Dislokation	2+
Eckert et al_2013_b	Prospektiv Cross- section Auto- Kontrolle	Alter 1-13 Ellenbogen trauma	106	Point-of-care US (7 Projek- tionen)	Rö (2 Ebenen)	Dislokation Detektion Verschie- bung-Einstu- fung	• Übereinstimmende Einstufung von Verschiebungen bei US und Rö	• sehr kleine Fallzahl dislo- zierter Fraktu- ren (4) • keine Quan- tifizierung der Dislokation	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Engin et al_2000	Prospektiv Cross- section Auto- Kontrolle	Alter > 18 Thorax- Trauma	23	Point-of-care US	Rö vor US (frontale und laterale Pro- jektion)	Dislokation Detektion (mehr als 25% der Knochenstärke in lateraler Projektion)	 US diagnostiziert in 2 Fällen einen niedrigeren Dislokationsgrad als Rö US ist weniger geeignet für die Beurteilung der Dislokation von Sternumfrakturen wegen unklarer Darstellung der hinteren Sternumgrenze 	kleine Fallzahl dislozierter Frakturen keine Verblindung deskriptiv	2-
Mahlfeld et la la 2001	Prospektiv Cross- section Auto- Kontrolle	Alter >27 Schmerzen in der Ster- numregion	11	US	Rö	Dislokation Detektion	• US bestätigt alle Dislokationen, die durch Rö festgestellt wurden	sehr kleineFallzahldeskriptivNebenergebnis	2-
Varga et al_2017	Prospektiv Cross- section Auto- Kontrolle	Kinder Handge- lenktrauma bei nicht- geschlossen er Wachs tumsfuge	467	Point-of-care US	Rö (2 Ebenen)	Dislokation Detektion	• US bestätigt alle Dislokationen, die durch Rö festgestellt wurden	 Volltext auf Ungarisch keine Zahlen angaben Nebenergebnis 	2+
Wawrzyk et al_2015 %	Prospektiv Cross- section Auto- Kontrolle	Alter 2-18 Zustand nach Frak- tur langer Knochen	24	US	Rö	Dislokation Detektion	• keine Differenzen zw. US und Rö	 kleine Zahl dislozierter Frakturen (4) deskriptiv Nebenergebnis 	2-
Yesilaras et al_2014 %	Prospektiv Cross- section Auto- Kontrolle	Alter > 14 Fußtrauma, Verdacht auf MFK 5 Fraktur	48	Point-of-care US	Rö	Dislokation Messung	 US 1,2 mm, Rö 1,8 mm gute Korrelation zw. US und Rö Messergebnissen (κ = 0,88) US kann Dislokation in mehreren Ebenen bewerten 	• 1 US Untersucher	2++

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
You et al_2010	Prospektiv Cross- section Auto- Kontrolle	Alter 8-78 Schmerzen in der Ster- numregion nach Tho- raxtrauma	36	US bei Aufnahme US-Kontrollen am 3. Tag und nach 1, 2 und 3 Wochen		• Dislokation Detektion (mehr als die Knochenstärke in lateraler Projektion)	• übereinstimmende US und Rö Ermittlung von Dislokation	• kleine Zahl dislozierter Frakturen (5) • kein Refe- renzstandard • Nebenergeb- nis	2-
Zhang & Chen_2008	Prospektiv Fallserie	Alter 2-9 Fraktur des lateralen Humerus- Kondylus	9		Rö (vor US) Rö follow-up	• Dislokation Detektion	 US diagnostiziert Dislokation >2 mm in 6 von 9 Fällen US ist geeignet für die Differenzierung instabiler Frakturen des Ellenbogens 	• sehr kleine Stichprobe • deskriptiv • keine Ver- blindung	2-

PICO 21 Kallus

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Akinmade et al_2018 \$	Prospektiv Auto- Kontrolle	Alter 1-15 Verdacht auf Fraktur langer Knochen	62	Point-of-care US Follow-up US nach 3 und 6 Wochen	Rö bei Auf- nahme Rö Follow-up nach 3 und 6 Wochen	• Kallus-De- tektion	 US erkennt Kallus-Bildung in 97% nach 3 Wochen und in 100% nach 6 Wochen Rö erkennt Kallus-Bildung in 42% nach 3 Wochen und in 90% nach 6 Wochen 	• relativ kleine Fallzahl	2++
Caruso et al_2000	Prospektiv Longitudi- nale Obser- vation	Tibia-Fraktur mit externer Fixation Gesunde Kontrollen	20	US und Farb- Doppler 10 Tage nach OP und alle 25 Tage	Rö in 4 Pro- jektionen alle 25 Tage	• Kallus-Detektion • Resistenz-Index	Bei normaler Kallus-Ent- wicklung zeigt Farb-Doppler bis zu ca. 100 Tagen post- OP Zeichen von Vaskularisation und der Resistenz-Index nimmt ab • Fehlende Vaskularisation und hoher Resistenzindex deuten auf verzögerte Frakturheilung hin	 Farb-Doppler mit Betrachtungsfeld von 120⁰, s/w US umfasst >250⁰ deskriptiv kein Vergleich US-Rö- Kontrollgruppe nur zu visuellem Training 	2-
2015 % Paik et al_2005	Cross- Section Va- lidierungs- studie	Alter >22 Trauma- o. Ca-Anamnese mit positivem Szintigrafie- Befund	58	US	Rö	Differential- diagnostischer Vergleich	US identifiziert Kallus bei Rippenfrakturen so gut wie Szintigrafie	 keine Angaben zur Verblindung deskriptiv Nebenergebnis 	2-
Wawrzyk et al_2015 \$	Prospektiv Cross- section Auto- Kontrolle	Alter 2-18 Zustand nach Frak- tur langer Knochen	24	US Pulsed-Wave- Doppler	Rö	 Kallus-Be- wertung vaskulärer Resistenz-In- dex 	 keine Differenzen zw. US und Rö in Kallusabmessung Resistenz-Index <0,2 in- diziert fragilen Kallus und verzögerte Heilung 	• relativ kleine Stichprobe • Resistenz- Index und Kallusqualität nach subjektiven Kriterien verglichen	2+

PICO 00 Allgemein (keine definierte Lokalisation)

Klinische Studien

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Abi Khalil et al_2011	Prospektiv Cross- section Auto- Kontrolle	Alter <14 Extremität- Trauma Rö-Befund negativ o. einseitige Kortikalis- Läsion	50	Point-of-care US	Rö (vor US)	• Fraktur bzw. Weichteil-Lä- sion	 US diagnostiziert zusätzlich Frakturen bzw. Weichläsionen in 30% der Fälle US ist überlegen bei der Diagnose bzw. Ausschluss okkulter Frakturen und Hämatome 	 keine Verblindung bez. Rö-Befund deskriptiv 	2-
Akinmade et al_2018	Prospektiv Auto-Kont- rolle	Alter <16 Trauma langer Kno chen	62	Point-of-care US	Rö	• Diagnosti- sche Leistung	Sensitivität 96%Spezifität 100%PPV 100%NPV 83%	 willkürliche Stichprobe Schlussfolgerungen bez. Regionaldifferenzen anhand von 2 Fällen 	2-
Barata et al_2012	Prospektiv Auto-Kont- rolle	Alter <18 Frakturver- dacht nach Trauma langer Kno chen	53 (98 US)	Point-of-care US	Rö	• Diagnostische Leistung -Frakturerkennung -Indikation für Reposition	 Sensitivität 95 und 100% Spezifität 85 und 97% PPV 84 und 86% NPV 96 und 100% 	willkürliche Stichprobe niedrige US Qualifikation underpower mit kleinen Untergruppen Parameter über Fraktur- zahl berechnet	2-
Beltrame et al_2012	Prospektiv Auto-Kont- rolle	Alter 7-88 Frakturver- dacht (ohne Ge- lenke)	86	Point-of-care US	Rö	 Diagnostische Leistung Übereinstim mung US-Rö 	 Sensitivität 94% Spezifität 92% Übereinstimmung 93% (bei Hand- und Fußfrakturen nur 75%) 	 willkürliche Stichprobe Konsensus- Diagnostik Gelenkfrakturen ausgeschlossen 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Bolandparvaz et al_2013	Prospektiv Cross- section Auto- Kontrolle	Alter > 18 Polytrau- ma der Ex- tremitäten	80	Point-of-care US	Rö	Diagnostische Leistung Übereinstim mung US-Rö	Leistung und Übereinstimmung variieren bez. Lokalisation und Gelenknähe • Sensitivität: Arm 56, Bein 75, Armgelenk 60, Beingelenk 60% • Spezifität: Arm 84, Bein 72, Armgelenk 69, Beingelenk 62% • PPV: Arm 71, Bein 66, Armgelenk 42, Beingelenk 33% • NPV Arm 73, Bein 80, Armgelenk 81, Beingelenk 83% • Übereinstimmung (κ): Arm 0,58, Bein 0,52, Armgelenk 0,47, Beingelenk 0,25 • US ist als primäre Diagnose-Modalität nicht geeignet	• kleine Unter gruppen • kein Follow-up falsch positiver US Befunde	2++
Bonnefoy et al_2006	Prospektiv Cross- section Auto- Kontrolle	Alter >14 Fraktur- Verdacht nach Knie- Trauma	48	Point-of-care US	Point-of-care Rö CT als Referenzstandard	• Diagnostische Leistung von <i>a</i>)US und <i>b</i>)Rö vs. CT	Frakturerkennung Sensitivität: a) 94 b) 84 Spezifität: a) 94 b) 88 PPV: a) 97 b) 93 NPV: a) 89 b) 75 Lipohämarthrose Sensitivität: a) 97 b) 55 Spezifität: a) 100 b) 100 PPV: a) 100 b) 100 NPV: a) 94 b) 55 Erkennung von Lipohämar- throse ist der Vorteil von US	 underpower verschiedene intraartikuläre Lokalisationen und Untergrup pen keine Untersuchung in schräger Projektion 	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Caroselli et al_2021	Prospektiv Auto-Kont- rolle	Alter <17 Frakturver- dacht (oh- ne Schädel	554	Point-of-care US	Rö (vor US)	Qualifikations -abhängige • Diagnosti- sche Leistung • Übereinstim- mung US-Rö	Leistungsparameter sind qualifikationsabhängig (hoch vs. standard) • Sensitivität 92 vs 72% • Spezifität 83 vs 89% • PPV 89 vs 76% • NPV 91 vs 79% • 0,85 vs 0,54 Qualifikation und Feststellung von Knochendiskontinuität sind für Übereinstimmung ausschlaggebend	willkürliche Stichprobe keine Verblindung ungleiche Pat Verteilung zw. Zentren mit hoher und niedriger Qualifikation 1 Untersucher / Zentrum	2+
Cho et al_2010	Prospektiv Auto-Kont- rolle	Alter <15 Verdacht auf okkulte Extremität- Fraktur	25		Rö (vor US) Rö Follow-up MRT o. Szin- tigrafie bei Unklarheit	• Fraktur- Diagnose	Frakturverdacht in allen Fällen bestätigt	 kleine Falzahl illustrative Fallselektion post hoc deskriptiv 	2-
	Prospektiv Cross- section Auto- Kontrolle	Alter >18 Fraktur- Verdacht	83	Point-of-care US	Point-of-care Rö	Diagnosti- sche Leistung	 Sensitivität 98% Spezifität 98% PPV 100% NPV 95% Genauigkeit 99% 	nur 1 hochqualifiziert er US Bewerter	
Dulchavsky et Dallaudiere et al_2002 al_2015	Prospektiv Auto-Kont- rolle	Alter >18 Extremität- Frakturver- dacht	95 (158 Unter- suchun- gen)	US durch nicht ärztliche Un- tersucher	Rö	• Diagnosti- sche Leistung	 Sensitivität 50-92% (je nach Lokalisation) Spezifität 100% Nicht-ärztliches Personal kann US Diagnostik durchführen 	 Minimales Training nicht berechtigte Statistik 	2+
Eksioglu et al_2003	Prospektiv Deskriptiv	Alter <14 Rö-positi- ve Fraktur ossifizier- ter Kno- chen	39	US	Rö (vor US)	• US Merkma- le pädiatri- scher Fraktu- ren	Subperiostales Hämatom, Kortikalis-Unterbrechung und reverberierendes Echo sind bei allen Frakturen ver- treten Biegung nur bei inkompletten Frakturen präsent	 keine Verblindung deskriptiv kleine Fallzahlen 	2-

Ref	Design	Popula- tion	Stich- probe	Intervention	1	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Hübner et al_2000	Prospektiv Cross- section Auto- Kontrolle	Kinder Fraktur- verdacht	163 (224 Fraktu- ren)	Point-of-care US	Rö	• Diagnosti- sche Leistung	 Sensitivität 98% Spezifität 69% gute Leistung bei Diaphy- sen- Frakturen, niedrigere Parameter bei Gelenknähe, Salter-Harris oder Fraktur-Spalt <1 mm 	• hochqualifi- zierte Unter- sucher	2++
Marshburn et al_2004	Prospektiv Auto- Kontrolle	Alter >28 Extremität- Fraktur	58	Point-of-care US	Körperliche Untersuchung Rö als Refe- renz	tersuchung	Sensitivität 93 vs 79% Spezifität 83 vs 90% Minimales Training ist für Frakturdiagnostik langer Knochen ausreichend	 willkürliche Stichprobe ältere Population US Training für 1 Stunde 	2+
McNeil et al_2009	Retrospekt. Auto-Kont- rolle	Alter >18 Fraktur- Verdacht	44	Point-of-care US mit tragba- rem Gerät	Rö (falls keine Symptombes- serung nach 72 Stunden)	Diagnostische Leistung	Sensitivität 100% Spezifität 94%	 willkürliche Stichprobe Fall-Subselektion ex iuvantibus kleine Fraktur-Fallzahl kein Followup negativer Fälle 	2-
Moritz et al_2008	Prospektiv Cross- section Auto- Kontrolle	Alter <17 Fraktur- Verdacht nach Trau- ma	653 (726 Lokali satio- nen)	US	Rö	Diagnostische Leistung US vs. Rö	 Sensitivität 93 vs 93% Spezifität 99,5 vs 99,8% PPV 99 vs 100% NPV 94,5 vs 94,8% Genauigkeit 97 vs 97% US und Rö sind bei Frakturdiagnostik gleichwertig 	• qualifizierte Untersucher	2++
Musa & Milson_2015	Prospektiv Auto-Kont- rolle	Alter >2 Verdacht auf distale Extremität- fraktur	97	US	Rö	Diagnostische Leistung		willkürliche Stichprobe keine demografische n Angaben keine Parameterbered hnung	2-

Ref	Design	tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Patel et al_2009	Prospektiv Auto-Kont- rolle	Alter 2-17 Verdacht auf Fraktur langer Knochen (Gelenke ausgesch- lossen)	33 (66 Lokalisati onen)	Point-of-care US	Rö	Diagnostische Leistung bez. • Frakturdiagnose (a) • notwendiger Reposition (b) • korrekter Reposition (c)	 Sensitivität a)97 b)100 c)100% Spezifität a)93 b)85 c)80% PPV a) 95 b) 86 c) 89% NPV a) 96 b) 100 c) 100% Übereinstimmung a) 0,91 b)0,85 c) 0,74 	willkürliche Stichprobe kleine Fall- zahl und Un- tergruppen Gelenke aus- gechlossen	2-
Sinha et al_2011	Prospektiv Auto-Kont- rolle	Alter 7-17 Verdacht auf Fraktur langer Knochen	41	Point-of-care US	Rö	Diagnosti- sche Leistung	 Sensitivität 89% Spezifität 100% PPV 100% NPV 97% 	willkürliche Stichprobe relativ kleine Fallzahl minimales US Training Gelenke ausgechlossen	2-
Tomer et al_2006	Prospektiv Cross- section Auto- Kontrolle	Alter >18 Fraktur- Verdacht	51	Point-of-care US	Rö	• Frakturdiag- nose	Frakturerkennung variiert nach anatomischer Region inkorrekte Diagnose bei obesen Patienten (BMI>25)	 qualifizierte Untersucher kleine Fallzahl und Untergruppen deskriptiv 	2-
Waterbrook et al_2013Tomer et al_2006	Prospektiv Auto- Kontrolle	Kinder und Erwachsen Verdacht auf Fraktur langer Knochen	106 (147 Lokali- satio- nen)	Point-of-care US	Rö	Diagnosti- sche Leistung	 Sensitivität 90% Spezifität 96% PPV 90% NPV 96% PLR 23,0 NLR 0,10 Diskriminierung ROC 0,93 Übereinstimmung κ 0,92 	Willkürliche Stichprobe underpower sehr heterogene Qualifikation	2+

Ref	Design	Popula- tion	Stich- probe	Intervention	Komparator	Primär- Endpunkt	Wichtigste Ergebnisse	Schwächen/ Bias	Evidenz- Niveau
Weinberg et al_2010	Prospektiv Auto-Kont- rolle	Alter <25 Fraktur- Verdacht	212 (348 Lokalisat ionen)	Point-of-care US	Rö oder CT	Diagnostische Leistung bez. • Knochentyp a)lang b)kurz • Alter c)>18 d)<18	 Sensitivität a)73 b)77 c)60 d)78 Spezifität a)92 b)93 c)92 d)93 mehr als 85% der Fehldiagnosen im Epiphysenbereich 	willkürliche Stichprobe minimales US Training Sprung- und Handgelenk- Ausschluss relativ kleine Untergruppen	2++

Meta-Analysen und Systematische Reviews

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Ackermann & Eckert_2015	Selektive Literatur- Recherche bis 2015	n.a.	 Sonografie in pädiatrischen Fällen wird als Hauptuntersuchung empfohlen bei distale Unterarm- und Clavicula-Frakturen Ausschluss von Ellenbogenfrakturen Ausschluss bzw. Bestimmung der Achsenabweichung bei proximalen Humerusfrakturen Initialdiagnostik von Schädelfrakturen und Intrakranialdiagnostik bei Säuglingen Sonografie bei Erwachsenen wird empfohlen bei Stellungskontrolle Monitoring von Kallus-Bildung Sternum-Frakturdiagnostik 	• keine Qualitätsbewer tung der Quellen	4
Ackermann et al_2020	Experten- Meinung	n.a.	 Indikationen für Sonografie-Diagnostik im Kindesalter distale Unterarmfrakturen (Evidenzklasse Ia) Ellenbogenverletzungen (IIa) proximale Humerusfrakturen (IIa) Clavicula-Frakturen (IIa) Screening bei Frakturverdacht (IIa) AC Gelenksprengung (IIIb) 	• keine Qualitätsbewertung der Quellen	4

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Champagne et al_2019	Medline, EMBASE, Cochrane	2 360 Fälle	 Bei der Diagnostizierung von Extremitätenbrüchen in Erwachsenen variiert US Sensitivität je nach dem jeweiligen Referenzstandard im Bereich 42-100% und Spezifität zwischen 65 und 100% Beste diagnostische Genauigkeit wird bei Fuß- und Knöchelfrakturen festgestellt Gepoolte Werte für Sensitivität und Spezifität entsprechen 93 und 92% für Armbrüche und 83 und 93% für Beinbrüche 18 von 26 Studien berichten von Sensitivität und Spezifität über 90% Die Studienevidenz erlaubt keine Empfehlung zugunsten der US Anwendung als primäre diagnostische Methode bei Extremitätenfrakturen in Erwachsenen 	unterschiedliche Referenzstand ards Qualitätsbewertung nach CASP und SIGN	2++
Chartier et al_2017	Medline EMBASE bis 07/2015		Point-of-care US diagnostiziert Frakturen langer Knochen mit • Sensitivität 65-100%; Spezifität 79-100%, PLR >3,11, NLR <0,45 • Sensitivität und Spezifität für adäquate Reposition sind 94-100 bzw. 56-100% Diagnose pädiatrischer Unterarmfrakturen (gepoolt aus 10 Studien) • Sensitivität und Spezifität jeweils 93% Diagnose von Knöchel- und Sprunggelenkfrakturen bei Erwachsenen (gepoolt aus 4 Studien) • Sensitivität 90%, Spezifität 94%	• QUADAS-2 Bewertung: geringes Bias-Risiko • sehr variable Untersucher- Qualifikation • methodische Heterogenität	2++
Joshi et al_2013	Medline, EMBASE 1965- 2012	9 US Studien 8 Studien zu körperlicher Untersuchung	 Im Vergleich zu Rö stellt US eine zuverlässige Methode für die Diagnostizierung bzw. den Ausschluss von Frakturen der oberen Extremität dar Die durchschnittliche US Sensitivität und Spezifität bei pädiatrischen Unterarm- und Clavicula-Frakturen übersteigt 90% Die diagnostische Leistungsfähigkeit der körperlichen Untersuchung ist unschlüssig 	QUADAS-2: variable Qualität häufig zufällige Stichprobe relativ kleine Fallzahlen	2++
Schmid et al_2017	Medline, EMBASE, Cochrane	48 Studien 4 427 Fälle (5 436 Untersuchungen)	 Gepoolte US Sensitivität und Spezifität: 91 bzw. 94% US zeigt höhere Sensitivität bei der Diagnostizierung von Humerus-, Unterarm-, Knöchel- und pädiatrischen Frakturen und niedrigere Leistung bei kurzen Knochen, Hand- und Fußgelenk und generell bei Erwachsenen 	• QUADAS-2: auffallende Heterogenität • unterschiedliche Referenzstandards	2++

Ref	Quellen	Fallzahl	Zusammenfassung	Schwächen/ Bias	Evidenz- Niveau
Sorensen & Hunskaar_2019	Medline bis 07/2019	38 Studien und Meta- Analysen zu US Anwendung bei Traumen des Stützapparats (28 zu Frakturen)	 Bis auf wenigen Ausnahmen zeigt US Diagnostik hohe Sensitivität und Spezifität Die US Untersuchungsdauer ist meist kürzer als andere Modalitäten Korrekte US Anwendung ist auch durch Allgemeinmediziner mit minimalem Training möglich US Diagnostik ist stärker verbreitet in den USA, Korea und in der Türkei 	deskriptiv keine Qualitätsbewertung Teilergebnis	2+
Tong et al_2018	Medline, EMBASE	29 Studien	 Quantitative US Untersuchung ist für die Vorhersage bzw. das Monitoring metabolischer Knochenerkrankungen bei Neugeborenen geeignet US-Werte korrelieren häufig (jedoch nicht immer) mit dem Geburtsgewicht bei Frühgeburten 	 nur Englisch Studienqualität in vielen Fällen nicht definierbar 	2+ oder n.a.
Tsou et al_2020	Medline, EMBASE, Web of Science bis 11/2019	32 Studien 2 994 Fälle	 Im Vergleich zu konventioneller Radiografie zeigt US hervorragende Leistung bei der Diagnostizierung pädiatrischer Oberarmfrakturen oberhalb des Ellenbogens (Sensitivität 95%, Spezifität 95%, PLR 21,1, NLR 0,05) Die diagnostische Leistung bei Ellenbogenfrakturen ist: Sensitivität 95%, Spezifität 87%, PLR 7,3, NLR 0,06 Die Fläche unter der ROC-Kurve beträgt 0,98 bzw. 0,96 Die Frakturlokalisation (Ellenbogen vs. nicht-Ellenbogen) beeinflusst signifikant die diagnostische Genauigkeit von US 	QUADAS-2: • Selection bias in 31% • keine Verblin dung in 25% • unklare Verblindung in 41%	2++
Vossschulte et al_2020	Retrospekti- ve Analyse eigener Da- ten über 1 J.	1 072 Fälle mit 672 Frakturen	 Die Mehrheit pädiatrischer Frakturen wird durch Radiografie diagnostiziert (über 75%) Empfehlungen Bei Frakturverdacht ohne OP-Indikation soll US verwendet werden Bei klarem Frakturverdacht mit OP-Indikation soll Rö verwendet werden Bei Lebensgefahr bzw. Hochrasanz-Traumata soll das schnellste bildgebende Verfahren (üblicherweise Rö) verwendet werden MRT soll CT vorgezogen werden 	deskriptiv monozent- risch	2+

Anhang B: Übersicht Interessenkonflikte

Tabelle zur Erklärung von Interessen und Umgang mit Interessenkonflikten LL Fraktursonografie

	Berater*innen-bzw. Gutachter*innentätigkeit	Mitarbeit in einem Wissenschaftlichen Beirat (advisory board)	Bezahlte Vortrags- /oder Schulungs- tätigkeit	Bezahlte Autor*innen-/oder Coautor*innenschaft	Forschungs- vorhaben/Durchführung klinischer Studien	Eigentümer*innen- interessen (Patent, Urheber*innen-recht, Aktienbesitz)	Indirekte Interessen	Von COI betroffene Themen der Leitlinie1,Einstufung bzgl. der Relevanz,Konsequenz
v. Kaisenberg	keine	keine	keine	keine	keine	keine	keine	keine
Ackermann	keine	keine	Kursinstruktor (keine Industriefinanzierung)	Buchherausgeber "Fraktursonografie" (Springer)	ja, unbezahlt	keine	keine	keine
Großer	keine	Kinderneurologiehilfe - SHT	Bundeswehr-KH Ulm- Sono-Kurse	keine	keine	keine	keine	keine
Hauenstein	keine	keine	keine	keine	keine	keine	keine	keine
Kluge	Canon Medical Systems	Ultraschall in Med HaMiPla Arch Orthop Trauma Surg	GE Healthcare GmbH Canon Medical Systems	Buchherausgeber "Ultraschalldiagnostik der Hand"	keine	keine	keine	moderate Interessenkonflikt
Moritz	keine	keine	keine	keine	keine	keine	keine	keine
Tesch	keine	Beirat UIM	keine	Intervent Sono, Fraktursonographie Fokus Sono Notauf	keine	keine	keine	keine
Berthold	keine	keine	keine	keine	keine	Aktienbesitz Medizingerätehersteller	keine	geringer Interessenkonflikte
Fischer	keine	keine	keine	keine	Ja, DEGUM und Bracco	keine	keine	Abstimmung bei Indikation "Pseudarthrose" nicht berücksichtigt

In die tabellarische Zusammenfassung wurden hier nur die Angaben übertragen, für die nach Diskussion und Bewertung der vollständig entsprechend Formblatt der AWMF offengelegten Sachverhalte in der Leitliniengruppe ein thematischer Bezug zur Leitlinie festgestellt wurde. Die vollständigen Erklärungen sind im Leitliniensekretariat hinterlegt.

Versionsnummer: 1.0

Erstveröffentlichung: 02/2023

Nächste Überprüfung geplant: 012028

Die AWMF erfasst und publiziert die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt - dennoch kann die AWMF für die Richtigkeit des Inhalts keine Verantwortung übernehmen. **Insbesondere bei**

Dosierungsangaben sind stets die Angaben der Hersteller zu beachten!

Autorisiert für elektronische Publikation: AWMF online